論文の概要: An Unconditionally Secure Encryption Scheme for IoBT Networks
- arxiv url: http://arxiv.org/abs/2508.01085v1
- Date: Fri, 01 Aug 2025 21:39:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 14:33:07.239421
- Title: An Unconditionally Secure Encryption Scheme for IoBT Networks
- Title(参考訳): IoBTネットワークのための無条件セキュア暗号化方式
- Authors: Mohammad Moltafet, Hamid R. Sadjadpour, Zouheir Rezki,
- Abstract要約: システム内のデバイス間でメッセージを交換するための、無条件でセキュアな暗号化スキームを提供する。
このスキームの背後にある主要なアイデアは、すべてのデバイス間でセキュアに共有されるランダムなバイナリマトリックスを使用してメッセージを交換するための秘密鍵を提供することである。
このスキームはセマンティックに安全であること、すなわち、計算能力を持つ敵がメッセージに関する情報を1ビットも取得できないことを保証している。
- 参考スコア(独自算出の注目度): 9.836951305039245
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider an Internet of Battlefield Things (IoBT) system consisting of multiple devices that want to securely communicate with each other during a mission in the presence of an adversary with unbounded computational power. The adversary has complete access to listen/read the ciphertext without tampering with the communication line. We provide an unconditionally secure encryption scheme to exchange messages among devices in the system. The main idea behind the scheme is to provide secret keys to exchange messages using a random binary matrix that is securely shared among all the devices, and pair-wise random secret keys established between each pair of devices attempting to communicate before the mission. The scheme is implemented by using finite group modular addition. We show that the scheme is absolutely semantically secure, i.e., the scheme guarantees that an adversary with unbounded computational power cannot get even one bit of information about a message, except for an exponentially small probability in a security parameter. Besides that, we show that even if the random binary matrix is revealed to the adversary, the provided scheme is computationally secure against the key recovery attack.
- Abstract(参考訳): 我々は,非有界な計算能力を持つ敵の存在下でミッション中に相互にセキュアに通信したい複数のデバイスで構成される,戦場物のインターネット(IoBT)システムについて検討する。
相手は、通信回線を改ざんすることなく、暗号文を聴取/読取するための完全なアクセスを持つ。
システム内のデバイス間でメッセージを交換するための、無条件でセキュアな暗号化スキームを提供する。
このスキームの背後にある主要なアイデアは、すべてのデバイス間で安全に共有されるランダムなバイナリマトリックスと、ミッション前に通信しようとする各デバイス間で確立されたペアワイズな秘密鍵を使って、メッセージ交換のためのシークレットキーを提供することである。
このスキームは有限群モジュラー加算を用いて実装される。
このスキームは、セマンティックに安全であること、すなわち、非有界な計算力を持つ敵が、セキュリティパラメータの指数的に小さい確率を除いて、メッセージに関する情報を1ビットも取得できないことを保証している。
さらに,無作為なバイナリ行列が敵に暴露されたとしても,提案手法は鍵回復攻撃に対して計算的に安全であることを示す。
関連論文リスト
- Compile-Time Fully Homomorphic Encryption of Vectors: Eliminating Online Encryption via Algebraic Basis Synthesis [1.3824176915623292]
暗号文は、事前計算された暗号化ベースベクターとランタイムスケールの0の暗号化を組み合わせた構成である。
ランダム化された$mathbbZ_t$-加群として定式化し、標準仮定の下でIND-CPAセキュリティを満たすことを証明した。
ゼロのランダムな暗号のプールを必要とする以前の設計とは異なり、我々の構成は実行時に新しいスカラーによって乗算された1つのゼロ暗号文を用いて等価なセキュリティを実現する。
論文 参考訳(メタデータ) (2025-05-19T00:05:18Z) - Post-Quantum Cryptography: An Analysis of Code-Based and Lattice-Based Cryptosystems [55.49917140500002]
量子コンピュータはShorのアルゴリズムを使って最新の暗号システムを破ることができる。
我々はまず、量子攻撃に対して安全とされるコードベースのスキームであるMcEliece暗号システムについて検討する。
次に,最短ベクトル問題を解くことの難しさを基礎とした格子型システムNTRUについて検討する。
論文 参考訳(メタデータ) (2025-05-06T03:42:38Z) - CipherGuard: Compiler-aided Mitigation against Ciphertext Side-channel Attacks [30.992038220253797]
CipherGuardは、高い効率とセキュリティで暗号文側チャネルに対処するコンパイラ支援の緩和手法である。
我々は、CipherGuardが既存の最先端防御機構であるCipherFixよりも、より効率的な暗号化実装のセキュリティを強化することを実証した。
論文 参考訳(メタデータ) (2025-02-19T03:22:36Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
本稿では,SemCom に準同型暗号を適用する可能性について検討する。
タスク指向のSemComスキームを提案する。
論文 参考訳(メタデータ) (2025-01-17T13:26:14Z) - A Machine Learning-Based Framework for Assessing Cryptographic Indistinguishability of Lightweight Block Ciphers [1.5953412143328967]
Indistinguishabilityは暗号セキュリティの基本原則であり、IoT(Internet of Things)デバイス間で送信されるデータの保護に不可欠である。
本研究では,暗号化システムにおける不明瞭性評価における機械学習(ML)の能力について検討する。
MIND-Cryptは、軽量ブロック暗号の暗号不一致性を評価するために設計されたMLベースの新しいフレームワークである。
論文 参考訳(メタデータ) (2024-05-30T04:40:13Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
我々は、新しいハイブリッドユニバーサルネットワーク符号化暗号(NU-HUNCC)を導入する。
NU-HUNCCは,リンクのサブセットにアクセス可能な盗聴者に対して,個別に情報理論的に保護されていることを示す。
論文 参考訳(メタデータ) (2024-02-13T12:12:39Z) - GPT-4 Is Too Smart To Be Safe: Stealthy Chat with LLMs via Cipher [85.18213923151717]
実験により、いくつかの安全領域において、GPT-4の安全性アライメントをバイパスするために、ある暗号がほぼ100%の時間で成功することが示された。
本稿では,ロールプレイのみを使用し,自然言語によるいくつかの実演を行い,これを誘発する新しいSelfCipherを提案する。
論文 参考訳(メタデータ) (2023-08-12T04:05:57Z) - Quantum Public-Key Encryption with Tamper-Resilient Public Keys from One-Way Functions [12.45203887838637]
我々は一方通行関数から量子公開鍵暗号を構築する。
私たちの構成では、公開鍵は量子だが、暗号文は古典的である。
論文 参考訳(メタデータ) (2023-04-04T13:57:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Device-independent uncloneable encryption [0.0]
我々は、いくつかの復号化鍵が特定の暗号を復号化できる、無作為暗号の変種を導入する。
デバイスに依存しない暗号化が実現可能であることを示す。
本手法の簡単な変更により,単一復号器の暗号方式が得られることを示す。
論文 参考訳(メタデータ) (2022-10-03T16:17:01Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。