Flow Matching for Probabilistic Learning of Dynamical Systems from Missing or Noisy Data
- URL: http://arxiv.org/abs/2508.01101v1
- Date: Fri, 01 Aug 2025 22:35:17 GMT
- Title: Flow Matching for Probabilistic Learning of Dynamical Systems from Missing or Noisy Data
- Authors: Siddharth Rout, Eldad Haber, Stephane Gaudreault,
- Abstract summary: We introduce a variant of flow matching for probabilistic forecasting which estimates possible future states as a distribution over possible outcomes.<n>We also propose a generative machine learning approach to physically and logically perturb the states of complex dynamical systems.
- Score: 3.748255320979002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning dynamical systems is crucial across many fields, yet applying machine learning techniques remains challenging due to missing variables and noisy data. Classical mathematical models often struggle in these scenarios due to the arose ill-posedness of the physical systems. Stochastic machine learning techniques address this challenge by enabling the modeling of such ill-posed problems. Thus, a single known input to the trained machine learning model may yield multiple plausible outputs, and all of the outputs are correct. In such scenarios, probabilistic forecasting is inherently meaningful. In this study, we introduce a variant of flow matching for probabilistic forecasting which estimates possible future states as a distribution over possible outcomes rather than a single-point prediction. Perturbation of complex dynamical states is not trivial. Community uses typical Gaussian or uniform perturbations to crucial variables to model uncertainty. However, not all variables behave in a Gaussian fashion. So, we also propose a generative machine learning approach to physically and logically perturb the states of complex high-dimensional dynamical systems. Finally, we establish the mathematical foundations of our method and demonstrate its effectiveness on several challenging dynamical systems, including a variant of the high-dimensional WeatherBench dataset, which models the global weather at a 5.625{\deg} meridional resolution.
Related papers
- Probabilistic Forecasting for Dynamical Systems with Missing or Imperfect Data [3.748255320979002]
This study introduces a variant of probabilistic forecasting, estimating future states as distributions rather than single-point predictions.<n>We demonstrate its effectiveness on various dynamical systems, including the challenging WeatherBench dataset.
arXiv Detail & Related papers (2025-03-15T22:09:39Z) - A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems [44.99833362998488]
We introduce a repeated learning process to jointly describe several phenomena attributed to unintended hidden feedback loops.
A distinctive feature of such repeated learning setting is that the state of the environment becomes causally dependent on the learner itself over time.
We present a novel dynamical systems model of the repeated learning process and prove the limiting set of probability distributions for positive and negative feedback loop modes.
arXiv Detail & Related papers (2024-05-04T17:57:24Z) - Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
Dynamics [20.953728061894044]
Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow rapidly and tasks become more complex.
We consider a probabilistic hierarchical modeling paradigm that combines the benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization.
We derive two efficient variational inference techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models.
arXiv Detail & Related papers (2022-11-02T13:54:07Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
We present a novel, domain-agnostic approach to tackling this problem.
We use compositions of physics-informed random features, derived from ordinary differential equations.
We find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.
arXiv Detail & Related papers (2021-06-10T17:55:13Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.