MeshLLM: Empowering Large Language Models to Progressively Understand and Generate 3D Mesh
- URL: http://arxiv.org/abs/2508.01242v2
- Date: Tue, 05 Aug 2025 05:55:00 GMT
- Title: MeshLLM: Empowering Large Language Models to Progressively Understand and Generate 3D Mesh
- Authors: Shuangkang Fang, I-Chao Shen, Yufeng Wang, Yi-Hsuan Tsai, Yi Yang, Shuchang Zhou, Wenrui Ding, Takeo Igarashi, Ming-Hsuan Yang,
- Abstract summary: MeshLLM is a framework that leverages large language models (LLMs) to understand and generate text-serialized 3D meshes.<n>We introduce a Primitive-Mesh decomposition strategy, which divides 3D meshes into structurally meaningful subunits.<n> Experiments show that MeshLLM outperforms the state-of-the-art LLaMA-Mesh in both mesh generation quality and shape understanding.
- Score: 79.20802127426003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present MeshLLM, a novel framework that leverages large language models (LLMs) to understand and generate text-serialized 3D meshes. Our approach addresses key limitations in existing methods, including the limited dataset scale when catering to LLMs' token length and the loss of 3D structural information during mesh serialization. We introduce a Primitive-Mesh decomposition strategy, which divides 3D meshes into structurally meaningful subunits. This enables the creation of a large-scale dataset with 1500k+ samples, almost 50 times larger than previous methods, which aligns better with the LLM scaling law principles. Furthermore, we propose inferring face connectivity from vertices and local mesh assembly training strategies, significantly enhancing the LLMs' ability to capture mesh topology and spatial structures. Experiments show that MeshLLM outperforms the state-of-the-art LLaMA-Mesh in both mesh generation quality and shape understanding, highlighting its great potential in processing text-serialized 3D meshes.
Related papers
- Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence [13.168559963356952]
We present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations.<n>Our key insight is to unleash the strong structure prior to the feed-forward visual geometry foundation model.<n>A connector then integrates both features into unified visual tokens for enhanced spatial understanding.
arXiv Detail & Related papers (2025-05-29T17:59:04Z) - 3UR-LLM: An End-to-End Multimodal Large Language Model for 3D Scene Understanding [49.15555885075644]
We develop pipeline based on open-source 2D MLLMs and LLMs to generate high-quality 3D-text pairs.<n>We introduce the 3UR-LLM model, an end-to-end 3D MLLM designed for precise interpretation of 3D scenes.
arXiv Detail & Related papers (2025-01-14T03:50:23Z) - LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models [62.85566496673856]
This work explores expanding the capabilities of large language models (LLMs) pretrained on text to generate 3D meshes within a unified model.
A primary challenge is effectively tokenizing 3D mesh data into discrete tokens that LLMs can process seamlessly.
Our work is the first to demonstrate that LLMs can be fine-tuned to acquire complex spatial knowledge for 3D mesh generation in a text-based format.
arXiv Detail & Related papers (2024-11-14T17:08:23Z) - VP-LLM: Text-Driven 3D Volume Completion with Large Language Models through Patchification [56.211321810408194]
Large language models (LLMs) have shown great potential in multi-modal understanding and generation tasks.
We present Volume Patch LLM (VP-LLM), which leverages LLMs to perform conditional 3D completion in a single-forward pass.
Our results demonstrate a strong ability of LLMs to interpret complex text instructions and understand 3D objects, surpassing state-of-the-art diffusion-based 3D completion models in generation quality.
arXiv Detail & Related papers (2024-06-08T18:17:09Z) - MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
We present a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches.
MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
arXiv Detail & Related papers (2024-05-31T14:35:35Z) - Locally Adaptive Neural 3D Morphable Models [38.38400553022714]
We present the Locally Adaptive Morphable Model (LAMM), a framework for learning to generate and manipulate 3D meshes.
A very efficient computational graph allows our network to train with only a fraction of the memory required by previous methods.
We further leverage local geometry control as a primitive for higher level editing operations and present a set of derivative capabilities.
arXiv Detail & Related papers (2024-01-05T18:28:51Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.