論文の概要: Zero-shot Segmentation of Skin Conditions: Erythema with Edit-Friendly Inversion
- arxiv url: http://arxiv.org/abs/2508.01334v2
- Date: Tue, 05 Aug 2025 07:33:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 13:15:14.119902
- Title: Zero-shot Segmentation of Skin Conditions: Erythema with Edit-Friendly Inversion
- Title(参考訳): 皮膚条件のゼロショットセグメンテーション--編集フレンドリーなインバージョンによるエリテマ-
- Authors: Konstantinos Moutselos, Ilias Maglogiannis,
- Abstract要約: 本研究は, 拡散モデルにおける編集フレンドリーな逆転を用いたエロテマ(皮膚の赤み)の検出のためのゼロショット画像分割フレームワークを提案する。
この方法は、生成的編集により、エリスマのない同一患者の参照画像を合成し、これらの参照を元の画像と正確に整合させる。
- 参考スコア(独自算出の注目度): 0.27624021966289597
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study proposes a zero-shot image segmentation framework for detecting erythema (redness of the skin) using edit-friendly inversion in diffusion models. The method synthesizes reference images of the same patient that are free from erythema via generative editing and then accurately aligns these references with the original images. Color-space analysis is performed with minimal user intervention to identify erythematous regions. This approach significantly reduces the reliance on labeled dermatological datasets while providing a scalable and flexible diagnostic support tool by avoiding the need for any annotated training masks. In our initial qualitative experiments, the pipeline successfully isolated facial erythema in diverse cases, demonstrating performance improvements over baseline threshold-based techniques. These results highlight the potential of combining generative diffusion models and statistical color segmentation for computer-aided dermatology, enabling efficient erythema detection without prior training data.
- Abstract(参考訳): 本研究は, 拡散モデルにおける編集フレンドリーな逆転を用いたエロテマ(皮膚の赤み)の検出のためのゼロショット画像分割フレームワークを提案する。
この方法は、生成的編集により、エリスマのない同一患者の参照画像を合成し、これらの参照を元の画像と正確に整合させる。
色空間解析は、エリテマトーデス領域を特定するために、最小限の介入で行われる。
このアプローチは、注釈付きトレーニングマスクを必要とせず、スケーラブルで柔軟な診断支援ツールを提供しながら、ラベル付き皮膚科学データセットへの依存を著しく低減する。
最初の定性的な実験では、パイプラインは多様な症例で顔面エリテマを分離し、ベースライン閾値に基づく手法による性能改善を実証した。
これらの結果は, コンピュータ支援皮膚科における生成拡散モデルと統計カラーセグメンテーションを組み合わせる可能性を強調し, 事前のトレーニングデータなしで効率的なエリテマ検出を可能にした。
関連論文リスト
- SkinDualGen: Prompt-Driven Diffusion for Simultaneous Image-Mask Generation in Skin Lesions [0.0]
本稿では, トレーニング済み安定拡散2.0モデルを用いて, 高品質な合成皮膚病変画像を生成する手法を提案する。
実データと合成データを組み合わせたハイブリッドデータセットは、分類とセグメンテーションモデルの性能を著しく向上させる。
論文 参考訳(メタデータ) (2025-07-26T15:00:37Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - An analysis of data variation and bias in image-based dermatological datasets for machine learning classification [2.039829968340841]
臨床皮膚学では、分類モデルはRGB画像のみを入力として、患者の皮膚の悪性病変を検出することができる。
学習に基づくほとんどの手法では、トレーニングにおいて皮膚科のデータセットから取得したデータを用いており、これは金の基準によって大きく検証されている。
本研究の目的は,皮膚内視鏡検査と臨床検査のギャップを評価し,データセットの変動がトレーニングに与える影響を理解することである。
論文 参考訳(メタデータ) (2025-01-15T17:18:46Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
本研究では,無関係な特徴をフィルタリングし,深部血管造影という潜像を合成するコントラスト型変分自動エンコーダを提案する。
合成ネットワークの一般化性は、画像コントラストとノイズの特徴の変動に敏感なモデルを実現するコントラスト損失によって改善される。
論文 参考訳(メタデータ) (2023-07-01T06:13:10Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Saliency-based segmentation of dermoscopic images using color
information [3.8073142980733]
本稿では,色覚情報を用いて色素性病変領域を自動判定する方法について検討する。
本稿では,人間の視覚的知覚に触発された新しい知覚基準と組み合わせたバイナライゼーションプロセスを用いた新しい手法を提案する。
1497画像を含む2つの公開データベース上で評価を行った。
論文 参考訳(メタデータ) (2020-11-26T08:47:10Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Melanoma Detection using Adversarial Training and Deep Transfer Learning [6.22964000148682]
皮膚病変画像の自動分類のための2段階の枠組みを提案する。
第1段階では、条件付き画像合成のタスクにおいて、データ分布のクラス間変動を利用する。
第2段階では,皮膚病変分類のための深部畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-04-14T22:46:20Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。