Tuning LLM-based Code Optimization via Meta-Prompting: An Industrial Perspective
- URL: http://arxiv.org/abs/2508.01443v1
- Date: Sat, 02 Aug 2025 17:11:40 GMT
- Title: Tuning LLM-based Code Optimization via Meta-Prompting: An Industrial Perspective
- Authors: Jingzhi Gong, Rafail Giavrimis, Paul Brookes, Vardan Voskanyan, Fan Wu, Mari Ashiga, Matthew Truscott, Mike Basios, Leslie Kanthan, Jie Xu, Zheng Wang,
- Abstract summary: We introduce Meta-Prompted Code Optimization (MPCO), a framework that automatically generates task-specific prompts across diverse large language models (LLMs)<n>MPCO seamlessly deploys on the ARTEMIS industrial platform for automated validation and scaling.<n>Analysis shows that 96% of the top-performing optimizations stem from meaningful edits.
- Score: 7.699689169768917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing interest in leveraging large language models (LLMs) for automated code optimization. However, industrial platforms deploying multiple LLMs face a critical challenge: prompts optimized for one LLM often fail with others, requiring expensive model-specific prompt engineering. This cross-model prompt engineering bottleneck severely limits the practical deployment of multi-LLM optimization systems in production environments. To address this, we introduce Meta-Prompted Code Optimization (MPCO), a framework that automatically generates high-quality, task-specific prompts across diverse LLMs while maintaining industrial efficiency requirements. MPCO leverages meta-prompting to dynamically synthesize context-aware optimization prompts by integrating project metadata, task requirements, and LLM-specific contexts, and it seamlessly deploys on the ARTEMIS industrial platform for automated validation and scaling. Our comprehensive evaluation on five real-world codebases with 366 hours of runtime benchmarking demonstrates MPCO's effectiveness: it achieves overall performance improvements up to 19.06% with the best statistical rank across all systems compared to baseline methods. Analysis shows that 96% of the top-performing optimizations stem from meaningful edits. Through systematic ablation studies and meta-prompter sensitivity analysis, we identify that comprehensive context integration is essential for effective meta-prompting, and that all three major LLMs can serve effectively as meta-prompters, providing actionable insights for industrial practitioners.
Related papers
- EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models [65.48902212293903]
We present the Extremely Complex Instruction Following Benchmark (EIFBENCH) for evaluating large language models (LLMs)<n>EIFBENCH includes multi-task scenarios that enable comprehensive assessment across diverse task types concurrently.<n>We also propose the Segment Policy Optimization (SegPO) algorithm to enhance the LLM's ability to accurately fulfill multi-task workflow.
arXiv Detail & Related papers (2025-06-10T02:39:55Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model [63.14883657299359]
Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering.<n> tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert, where distribution shifts between pre-training and target datasets constrain target performance, and OpenWorld Stabilization, where catastrophic forgetting erases the model general knowledge.
arXiv Detail & Related papers (2025-03-06T15:29:13Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Experts [40.98057887166546]
Large language model (LLM) agents have emerged as a promising solution to automate the workflow of machine learning.<n>We introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models.<n>By systematically updating individual components based on real training feedback, Iterative Refinement improves overall model performance.
arXiv Detail & Related papers (2025-02-25T01:52:37Z) - Training of Scaffolded Language Models with Language Supervision: A Survey [62.59629932720519]
This survey organizes the literature on the design and optimization of emerging structures around post-trained LMs.<n>We refer to this overarching structure as scaffolded LMs and focus on LMs that are integrated into multi-step processes with tools.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.<n>Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.<n>We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - In-the-loop Hyper-Parameter Optimization for LLM-Based Automated Design of Heuristics [0.020482269513546456]
Large Language Models (LLMs) have shown great potential in automatically generating and optimizing (meta)heuristics.
This paper presents a novel hybrid approach, LLaMEA-HPO, which integrates an open source LLaMEA framework with a Hyper- Evolutionary Optimization (HPO) procedure in the loop.
arXiv Detail & Related papers (2024-10-07T14:04:31Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications.
We conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems.
We then propose ScaleLLM, an optimized system for resource-efficient LLM serving.
arXiv Detail & Related papers (2024-07-23T23:37:29Z) - MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs [20.793892860721712]
We introduce MetaLLM, a framework that dynamically and intelligently routes each query to the optimal large language models (LLMs)<n>By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty.<n>Our experiments, conducted on popular LLM platforms such as OpenAI and Together AI, showcase MetaLLM's efficacy in real-world scenarios.
arXiv Detail & Related papers (2024-07-15T15:45:07Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
We propose a viable path for training open-source LLMs capable of optimization modeling and developing solver codes.<n>This work also introduces IndustryOR, the first industrial benchmark for evaluating LLMs in solving practical OR problems.
arXiv Detail & Related papers (2024-05-28T01:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.