Reconstructing Trust Embeddings from Siamese Trust Scores: A Direct-Sum Approach with Fixed-Point Semantics
- URL: http://arxiv.org/abs/2508.01479v1
- Date: Sat, 02 Aug 2025 20:19:22 GMT
- Title: Reconstructing Trust Embeddings from Siamese Trust Scores: A Direct-Sum Approach with Fixed-Point Semantics
- Authors: Faruk Alpay, Taylan Alpay, Bugra Kilictas,
- Abstract summary: We study the inverse problem of reconstructing high-dimensional trust embeddings from the one-dimensional Siamese trust scores that many distributed-security frameworks expose.<n>A suite of synthetic benchmarks confirms that, even in the presence of Gaussian noise, the recovered embeddings preserve inter-device geometry as measured by Euclidean and cosine metrics.<n>The paper demonstrates a practical privacy risk: publishing granular trust scores can leak latent behavioural information about both devices and evaluation models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the inverse problem of reconstructing high-dimensional trust embeddings from the one-dimensional Siamese trust scores that many distributed-security frameworks expose. Starting from two independent agents that publish time-stamped similarity scores for the same set of devices, we formalise the estimation task, derive an explicit direct-sum estimator that concatenates paired score series with four moment features, and prove that the resulting reconstruction map admits a unique fixed point under a contraction argument rooted in Banach theory. A suite of synthetic benchmarks (20 devices x 10 time steps) confirms that, even in the presence of Gaussian noise, the recovered embeddings preserve inter-device geometry as measured by Euclidean and cosine metrics; we complement these experiments with non-asymptotic error bounds that link reconstruction accuracy to score-sequence length. Beyond methodology, the paper demonstrates a practical privacy risk: publishing granular trust scores can leak latent behavioural information about both devices and evaluation models. We therefore discuss counter-measures -- score quantisation, calibrated noise, obfuscated embedding spaces -- and situate them within wider debates on transparency versus confidentiality in networked AI systems. All datasets, reproduction scripts and extended proofs accompany the submission so that results can be verified without proprietary code.
Related papers
- ClaimTrust: Propagation Trust Scoring for RAG Systems [7.7690689135107425]
ClaimTrust is a propagation-based trust scoring framework that dynamically evaluates the reliability of documents in a RAG system.<n>We preprocess and analyze 814 political news articles to extract 2,173 unique claims and classify 965 meaningful relationships.<n>ClaimTrust iteratively updates trust scores until convergence, effectively differentiating trustworthy articles from unreliable ones.
arXiv Detail & Related papers (2025-03-12T07:52:24Z) - Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems [89.35169042718739]
collaborative inference enables end users to leverage powerful deep learning models without exposure of sensitive raw data to cloud servers.<n>Recent studies have revealed that these intermediate features may not sufficiently preserve privacy, as information can be leaked and raw data can be reconstructed via model inversion attacks (MIAs)<n>This work first theoretically proves that the conditional entropy of inputs given intermediate features provides a guaranteed lower bound on the reconstruction mean square error (MSE) under any MIA.<n>Then, we derive a differentiable and solvable measure for bounding this conditional entropy based on the Gaussian mixture estimation and propose a conditional entropy algorithm to enhance the inversion robustness
arXiv Detail & Related papers (2025-03-01T07:15:21Z) - ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation [91.20492150248106]
We investigate the internal mechanisms behind unfaithful generation and identify a subset of mid-to-deep feed-forward networks (FFNs) that are disproportionately activated in such cases.<n>We propose Parametric Knowledge Muting through FFN Suppression (ParamMute), a framework that improves contextual faithfulness by suppressing the activation of unfaithfulness-associated FFNs.<n> Experimental results show that ParamMute significantly enhances faithfulness across both CoFaithfulQA and the established ConFiQA benchmark, achieving substantial reductions in reliance on parametric memory.
arXiv Detail & Related papers (2025-02-21T15:50:41Z) - Generalization Certificates for Adversarially Robust Bayesian Linear Regression [16.3368950151084]
Adversarial robustness of machine learning models is critical to ensuring reliable performance under data perturbations.<n>Recent progress has been on point estimators, and this paper considers distributional predictors.<n>Experiments on real and synthetic datasets demonstrate the superior robustness of the derived adversarially robust posterior over Bayes posterior.
arXiv Detail & Related papers (2025-02-20T06:25:30Z) - Investigating Distributions of Telecom Adapted Sentence Embeddings for Document Retrieval [12.135498957287004]
We evaluate embeddings obtained from publicly available models and their domain-adapted variants.<n>We establish a systematic method to obtain thresholds for similarity scores for different embeddings.<n>We show that embeddings for domain-specific sentences have little overlap with those for domain-agnostic ones.
arXiv Detail & Related papers (2024-06-18T07:03:34Z) - Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
We develop a principled procedure for determining when a large language model should abstain from responding in a general domain.
We leverage conformal prediction techniques to develop an abstention procedure that benefits from rigorous theoretical guarantees on the hallucination rate (error rate)
Experimentally, our resulting conformal abstention method reliably bounds the hallucination rate on various closed-book, open-domain generative question answering datasets.
arXiv Detail & Related papers (2024-04-04T11:32:03Z) - REBAR: Retrieval-Based Reconstruction for Time-series Contrastive Learning [64.08293076551601]
We propose a novel method of using a learned measure for identifying positive pairs.
Our Retrieval-Based Reconstruction measure measures the similarity between two sequences.
We show that the REBAR error is a predictor of mutual class membership.
arXiv Detail & Related papers (2023-11-01T13:44:45Z) - Birds of a Feather Trust Together: Knowing When to Trust a Classifier
via Adaptive Neighborhood Aggregation [30.34223543030105]
We show how NeighborAgg can leverage the two essential information via an adaptive neighborhood aggregation.
We also extend our approach to the closely related task of mislabel detection and provide a theoretical coverage guarantee to bound the false negative.
arXiv Detail & Related papers (2022-11-29T18:43:15Z) - TRUST-LAPSE: An Explainable and Actionable Mistrust Scoring Framework
for Model Monitoring [4.262769931159288]
We propose TRUST-LAPSE, a "mistrust" scoring framework for continuous model monitoring.
We assess the trustworthiness of each input sample's model prediction using a sequence of latent-space embeddings.
Our latent-space mistrust scores achieve state-of-the-art results with AUROCs of 84.1 (vision), 73.9 (audio), and 77.1 (clinical EEGs)
arXiv Detail & Related papers (2022-07-22T18:32:38Z) - REAM$\sharp$: An Enhancement Approach to Reference-based Evaluation
Metrics for Open-domain Dialog Generation [63.46331073232526]
We present an enhancement approach to Reference-based EvAluation Metrics for open-domain dialogue systems.
A prediction model is designed to estimate the reliability of the given reference set.
We show how its predicted results can be helpful to augment the reference set, and thus improve the reliability of the metric.
arXiv Detail & Related papers (2021-05-30T10:04:13Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.