論文の概要: Translation-Equivariant Self-Supervised Learning for Pitch Estimation with Optimal Transport
- arxiv url: http://arxiv.org/abs/2508.01493v1
- Date: Sat, 02 Aug 2025 21:31:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.903465
- Title: Translation-Equivariant Self-Supervised Learning for Pitch Estimation with Optimal Transport
- Title(参考訳): 最適移動を用いたピッチ推定のための翻訳同変自己教師付き学習
- Authors: Bernardo Torres, Alain Riou, Gaël Richard, Geoffroy Peeters,
- Abstract要約: 本研究では,一次元翻訳同変系学習のための最適輸送目標を提案する。
提案手法は, 理論的に基礎を置き, より数値的に安定し, より簡易な, 最先端の自己教師型ピッチ推定器の訓練のための代替手段を提供する。
- 参考スコア(独自算出の注目度): 12.375791701957786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an Optimal Transport objective for learning one-dimensional translation-equivariant systems and demonstrate its applicability to single pitch estimation. Our method provides a theoretically grounded, more numerically stable, and simpler alternative for training state-of-the-art self-supervised pitch estimators.
- Abstract(参考訳): 本稿では,一次元翻訳同変系を学習するための最適輸送目標を提案し,その単一ピッチ推定への適用性を実証する。
提案手法は, 理論的に基礎を置き, より数値的に安定し, より簡易な, 最先端の自己教師型ピッチ推定器の訓練のための代替手段を提供する。
関連論文リスト
- Occam's model: Selecting simpler representations for better transferability estimation [5.329941688969535]
本稿では,事前学習したモデルの伝達可能性を評価するための2つの新しい指標を提案する。
さまざまな問題設定にまたがる最先端の代替手段に対して、提案した指標を厳格に評価する。
我々は、我々の測定値が最先端のベースラインと比較して、KendallのTauを最大32%増加させることを実験的に示した。
論文 参考訳(メタデータ) (2025-02-10T18:23:24Z) - Automatic Outlier Rectification via Optimal Transport [7.421153752627664]
コンケーブコスト関数を用いた最適輸送を用いた外乱検出のための新しい概念的枠組みを提案する。
コンケーブコスト関数を用いて最適な輸送距離を利用するための第一歩を踏み出し、修正セットを構築する。
次に、推定タスクを実行するための修正セット内での最適分布を選択する。
論文 参考訳(メタデータ) (2024-03-21T01:30:24Z) - Certified Human Trajectory Prediction [66.1736456453465]
本稿では,ロバスト性を保証する軌道予測に適した認証手法を提案する。
そこで本研究では, 拡散型トラジェクトリデノイザを提案し, 本手法に組み込むことにより, 性能低下を緩和する。
認定された予測器の精度と堅牢性を実証し、認定されていない予測器に対するそれらの優位性を強調する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - How to Estimate Model Transferability of Pre-Trained Speech Models? [84.11085139766108]
事前学習音声モデルの伝達可能性推定のためのスコアベースアセスメントフレームワーク
ベイズ確率推定と最適輸送という2つの表現理論を利用して、PSM候補のランクスコアを生成する。
本フレームワークは,候補モデルやレイヤを実際に微調整することなく,転送可能性スコアを効率的に計算する。
論文 参考訳(メタデータ) (2023-06-01T04:52:26Z) - Improving Diversity of Multiple Trajectory Prediction based on
Map-adaptive Lane Loss [12.963269946571476]
本研究では,地図適応の多様性を保証し,幾何学的制約を満たす新しい損失関数,textitLane Lossを提案する。
Argoverseデータセットを用いて行った実験により,提案手法は予測軌道の多様性を著しく向上させることが示された。
論文 参考訳(メタデータ) (2022-06-17T09:09:51Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
平行コーパスの欠如により、テキストスタイルの転送タスクの教師付きモデルを直接訓練することは不可能である。
我々は、当初、微調整されたニューラルマシン翻訳モデルに使用されていた意味的類似度指標を活用している。
我々のモデルは、強いベースラインに対する自動評価と人的評価の両方において大きな利益をもたらす。
論文 参考訳(メタデータ) (2020-10-24T04:30:02Z) - Imitative Planning using Conditional Normalizing Flow [2.8978926857710263]
自律走行車のための動的な都市シナリオにおける軌道計画の一般的な方法は、明確に特定され手作業によるコスト関数に依存することである。
自律走行車(AV)の軌道計画性能向上のための正規化フローの適用について検討する。
軌道プランナーのコスト多様体をエネルギー関数としてモデル化することにより、AV制御空間上のボルツマン分布以前のシーン条件付き写像を学習する。
論文 参考訳(メタデータ) (2020-07-31T16:32:23Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z) - SenSeI: Sensitive Set Invariance for Enforcing Individual Fairness [50.916483212900275]
まず、ある感度集合の不変性を強制する個別の公正性のバージョンを定式化する。
次に,輸送型正規化器を設計し,個別の公平性を強制し,効率よく正規化器を最小化するためのアルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-06-25T04:31:57Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルは準最適に収束するか、あるいは最適解に収束しないかもしれないことを示す。
理論的保証を伴って適応的なアプローチを提案し、いくつかの既存手法を実証的に上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-08T18:20:28Z) - Statistical Optimal Transport posed as Learning Kernel Embedding [0.0]
この研究は、統計学的最適輸送(OT)を、輸送計画のカーネルの平均埋め込みをサンプルベースによる限界埋め込みの推定から学習する、という新しいアプローチを採っている。
重要な結果は、非常に穏やかな条件下では、$epsilon$-optimal recovery of the transport plan と Barycentric-projection based transport map が、完全に次元のないサンプル複雑性で可能であることである。
論文 参考訳(メタデータ) (2020-02-08T14:58:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。