論文の概要: Statistical Optimal Transport posed as Learning Kernel Embedding
- arxiv url: http://arxiv.org/abs/2002.03179v6
- Date: Tue, 10 Nov 2020 08:41:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 22:31:18.860867
- Title: Statistical Optimal Transport posed as Learning Kernel Embedding
- Title(参考訳): 学習カーネル埋め込みとしての統計的最適輸送
- Authors: J. Saketha Nath (IIT Hyderabad, INDIA) and Pratik Jawanpuria
(Microsoft IDC, INDIA)
- Abstract要約: この研究は、統計学的最適輸送(OT)を、輸送計画のカーネルの平均埋め込みをサンプルベースによる限界埋め込みの推定から学習する、という新しいアプローチを採っている。
重要な結果は、非常に穏やかな条件下では、$epsilon$-optimal recovery of the transport plan と Barycentric-projection based transport map が、完全に次元のないサンプル複雑性で可能であることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective in statistical Optimal Transport (OT) is to consistently
estimate the optimal transport plan/map solely using samples from the given
source and target marginal distributions. This work takes the novel approach of
posing statistical OT as that of learning the transport plan's kernel mean
embedding from sample based estimates of marginal embeddings. The proposed
estimator controls overfitting by employing maximum mean discrepancy based
regularization, which is complementary to $\phi$-divergence (entropy) based
regularization popularly employed in existing estimators. A key result is that,
under very mild conditions, $\epsilon$-optimal recovery of the transport plan
as well as the Barycentric-projection based transport map is possible with a
sample complexity that is completely dimension-free. Moreover, the implicit
smoothing in the kernel mean embeddings enables out-of-sample estimation. An
appropriate representer theorem is proved leading to a kernelized convex
formulation for the estimator, which can then be potentially used to perform OT
even in non-standard domains. Empirical results illustrate the efficacy of the
proposed approach.
- Abstract(参考訳): 統計最適輸送(OT)の目的は、与えられたソースとターゲットの限界分布からのサンプルのみを用いて、最適な輸送計画/マップを一貫して推定することである。
この研究は、輸送計画のカーネルを学習する際の統計OTを、サンプルベースによる限界埋め込みの推定から推定する新しいアプローチを取る。
提案手法は,既存の推定器で広く用いられている$\phi$-divergence (entropy) ベースの正則化を補完する最大平均偏差に基づく正則化を用いてオーバーフィッティングを制御する。
重要な結果として、非常に穏やかな条件下では、$\epsilon$-optimal recovery of the transport plan と Barycentric-projection based transport map は、完全に次元のないサンプル複雑性で可能である。
さらに、カーネルの平均埋め込みを暗黙的に滑らかにすることで、サンプル外推定が可能になる。
適切な表現子定理は、推定子の核化された凸定式化へと導かれることが証明され、それが標準でない領域でもotを実行するために潜在的に使用できる。
その結果,提案手法の有効性が示唆された。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Minimax estimation of discontinuous optimal transport maps: The
semi-discrete case [14.333765302506658]
2つの確率分布、$P$ および $Q$ in $mathbb Rd$ の間の最適輸送写像を推定する問題を考える。
エントロピックな最適輸送に基づく推定器は、次元に依存しないミニマックス最適速度$n-1/2$で収束することを示す。
論文 参考訳(メタデータ) (2023-01-26T18:41:38Z) - Learning Optimal Flows for Non-Equilibrium Importance Sampling [13.469239537683299]
簡単なベース分布からサンプルを生成し,速度場によって生成された流れに沿って移動し,これらの流れに沿って平均を実行する手法を開発した。
理論面では、ターゲットに対する速度場を調整し、提案した推定器が完全推定器となる一般的な条件を確立する方法について論じる。
計算面では、ニューラルネットワークによる速度場を表現するためにディープラーニングを使用して、ゼロ分散最適化に向けて学習する方法を示す。
論文 参考訳(メタデータ) (2022-06-20T17:25:26Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - GAN Estimation of Lipschitz Optimal Transport Maps [0.0]
本稿では,ニューラルネットワークに基づく2つの確率分布間の最適輸送マップの統計的に一貫した最初の推定手法を提案する。
正則性仮定の下で、得られた生成元は、サンプルサイズが無限大に増加するにつれて、最適輸送写像に一様収束することを示した。
統計的保証や実用性に対処する従来の作業とは対照的に、最適な輸送用途に道を開くための表現的かつ実現可能な推定器を提供する。
論文 参考訳(メタデータ) (2022-02-16T10:15:56Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
滑らかな条件下では、2つの分布の間の正方形ワッサーシュタイン距離は、魅力的な統計的誤差上界で効率的に計算できる。
生成的モデリングのような応用への関心の対象は、基礎となる最適輸送写像である。
そこで本研究では,地図上の統計的誤差であるL2$が,既存のミニマックス下限値とほぼ一致し,スムーズな地図推定が可能となる最初のトラクタブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-03T13:45:36Z) - Entropic estimation of optimal transport maps [15.685006881635209]
厳密な有限サンプル保証付き$mathbbRd$上の2つの分布間の最適写像を推定する手法を開発する。
我々は,Sinkhornのアルゴリズムを用いて,推定器の計算が容易であることを示す。
論文 参考訳(メタデータ) (2021-09-24T14:57:26Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。