Asynchronous Federated Learning with non-convex client objective functions and heterogeneous dataset
- URL: http://arxiv.org/abs/2508.01675v1
- Date: Sun, 03 Aug 2025 09:06:42 GMT
- Title: Asynchronous Federated Learning with non-convex client objective functions and heterogeneous dataset
- Authors: Ali Forootani, Raffaele Iervolino,
- Abstract summary: Tosampling Federated Learning (FL) enables collaborative model across decentralized devices while preserving stale data privacy.<n>Asynchronous Learning (AFL) addresses these by allowing clients to update independently, improving scalability and reducing delays synchronization.<n>Our framework accommodates variations in data power, distribution, and communication, making it practical for real world applications.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training across decentralized devices while preserving data privacy. However, traditional FL suffers from communication overhead, system heterogeneity, and straggler effects. Asynchronous Federated Learning (AFL) addresses these by allowing clients to update independently, improving scalability and reducing synchronization delays. This paper extends AFL to handle non-convex objective functions and heterogeneous datasets, common in modern deep learning. We present a rigorous convergence analysis, deriving bounds on the expected gradient norm and studying the effects of staleness, variance, and heterogeneity. To mitigate stale updates, we introduce a staleness aware aggregation that prioritizes fresher updates and a dynamic learning rate schedule that adapts to client staleness and heterogeneity, improving stability and convergence. Our framework accommodates variations in computational power, data distribution, and communication delays, making it practical for real world applications. We also analyze the impact of client selection strategies-sampling with or without replacement-on variance and convergence. Implemented in PyTorch with Python's asyncio, our approach is validated through experiments demonstrating improved performance and scalability for asynchronous, heterogeneous, and non-convex FL scenarios.
Related papers
- Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
Federated learning (FL) enables collaborative model training across distributed edge devices while preserving data privacy, and typically operates in a round-based synchronous manner.<n>We propose ADEL-FL, a novel framework that jointly optimize per-round deadlines and user-specific batch sizes for layer-wise aggregation.
arXiv Detail & Related papers (2025-05-29T19:59:18Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.<n>Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.<n>We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Asynchronous Federated Learning: A Scalable Approach for Decentralized Machine Learning [0.9208007322096533]
Federated Learning (FL) has emerged as a powerful paradigm for decentralized machine learning, enabling collaborative model training across diverse clients without sharing raw data.<n>Traditional FL approaches often face limitations in scalability and efficiency due to their reliance on synchronous client updates.<n>We propose an Asynchronous Federated Learning (AFL) algorithm, which allows clients to update the global model independently and asynchronously.
arXiv Detail & Related papers (2024-12-23T17:11:02Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients")
Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift")
We propose and analyze Asynchronous Exact Averaging (AREA), a new (sub)gradient algorithm that utilizes communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies.
arXiv Detail & Related papers (2024-05-16T14:22:49Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning based on Pruning and Recovery [0.0]
This framework integrates asynchronous learning algorithms and pruning techniques.
It addresses the inefficiencies of traditional federated learning algorithms in scenarios involving heterogeneous devices.
It also tackles the staleness issue and inadequate training of certain clients in asynchronous algorithms.
arXiv Detail & Related papers (2024-03-16T14:35:03Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness [4.9851737525099225]
Federated Learning can be affected by data and device heterogeneities, caused by clients' different local data distributions and latencies in uploading model updates.<n>We present a new FL framework that ensures the accuracy and computational efficiency of this conversion.
arXiv Detail & Related papers (2023-09-24T03:19:40Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.