Neural Predictive Control to Coordinate Discrete- and Continuous-Time Models for Time-Series Analysis with Control-Theoretical Improvements
- URL: http://arxiv.org/abs/2508.01833v1
- Date: Sun, 03 Aug 2025 16:41:00 GMT
- Title: Neural Predictive Control to Coordinate Discrete- and Continuous-Time Models for Time-Series Analysis with Control-Theoretical Improvements
- Authors: Haoran Li, Muhao Guo, Yang Weng, Hanghang Tong,
- Abstract summary: We recast time-series problems as the continuous ODE-based optimal control problem.<n>Rather than learning dynamics solely from data, we optimize control actions that steer ODE trajectories toward task objectives.<n>We show that, under mild assumptions, this multi-horizon optimization leads to exponential convergence to infinite-horizon solutions.
- Score: 46.19047880604178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep sequence models have achieved notable success in time-series analysis, such as interpolation and forecasting. Recent advances move beyond discrete-time architectures like Recurrent Neural Networks (RNNs) toward continuous-time formulations such as the family of Neural Ordinary Differential Equations (Neural ODEs). Generally, they have shown that capturing the underlying dynamics is beneficial for generic tasks like interpolation, extrapolation, and classification. However, existing methods approximate the dynamics using unconstrained neural networks, which struggle to adapt reliably under distributional shifts. In this paper, we recast time-series problems as the continuous ODE-based optimal control problem. Rather than learning dynamics solely from data, we optimize control actions that steer ODE trajectories toward task objectives, bringing control-theoretical performance guarantees. To achieve this goal, we need to (1) design the appropriate control actions and (2) apply effective optimal control algorithms. As the actions should contain rich context information, we propose to employ the discrete-time model to process past sequences and generate actions, leading to a coordinate model to extract long-term temporal features to modulate short-term continuous dynamics. During training, we apply model predictive control to plan multi-step future trajectories, minimize a task-specific cost, and greedily select the optimal current action. We show that, under mild assumptions, this multi-horizon optimization leads to exponential convergence to infinite-horizon solutions, indicating that the coordinate model can gain robust and generalizable performance. Extensive experiments on diverse time-series datasets validate our method's superior generalization and adaptability compared to state-of-the-art baselines.
Related papers
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Stochastic Control for Fine-tuning Diffusion Models: Optimality, Regularity, and Convergence [11.400431211239958]
Diffusion models have emerged as powerful tools for generative modeling.<n>We propose a control framework for fine-tuning diffusion models.<n>We show that PI-FT achieves global convergence at a linear rate.
arXiv Detail & Related papers (2024-12-24T04:55:46Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.<n>Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.<n>We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
We develop a model-constrained discontinuous Galerkin Network (DGNet) approach.<n>The core of DGNet is the synergy of several key strategies.<n>We present comprehensive numerical results for 1D and 2D compressible Euler equation problems.
arXiv Detail & Related papers (2024-09-27T01:13:38Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
We propose a new framework for integrated model learning and predictive control.
We show that our framework can deliver better closed-loop performance than existing state-of-the-art methods.
arXiv Detail & Related papers (2023-12-20T06:25:02Z) - Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods [0.0]
We present a data-driven modeling framework called neural dynamical operator that is continuous in both space and time.
A key feature of the neural dynamical operator is the resolution-invariance with respect to both spatial and temporal discretizations.
We show that the proposed model can better predict long-term statistics via the hybrid optimization scheme.
arXiv Detail & Related papers (2023-11-20T14:31:18Z) - Latent Neural ODEs with Sparse Bayesian Multiple Shooting [13.104556034767025]
Training dynamic models, such as neural ODEs, on long trajectories is a hard problem that requires using various tricks, such as trajectory splitting, to make model training work in practice.
We propose a principled multiple shooting technique for neural ODEs that splits trajectories into manageable short segments, which are optimised in parallel.
We demonstrate efficient and stable training, and state-of-the-art performance on multiple large-scale benchmark datasets.
arXiv Detail & Related papers (2022-10-07T11:36:29Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.