On-the-Fly Object-aware Representative Point Selection in Point Cloud
- URL: http://arxiv.org/abs/2508.01980v1
- Date: Mon, 04 Aug 2025 01:39:09 GMT
- Title: On-the-Fly Object-aware Representative Point Selection in Point Cloud
- Authors: Xiaoyu Zhang, Ziwei Wang, Hai Dong, Zhifeng Bao, Jiajun Liu,
- Abstract summary: We propose a representative point selection framework for point cloud downsampling.<n>We show that our method consistently outperforms state-of-the-art baselines in both efficiency and effectiveness.<n>As a model-agnostic solution, our approach integrates seamlessly with diverse downstream models.
- Score: 21.55830632188697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point clouds are essential for object modeling and play a critical role in assisting driving tasks for autonomous vehicles (AVs). However, the significant volume of data generated by AVs creates challenges for storage, bandwidth, and processing cost. To tackle these challenges, we propose a representative point selection framework for point cloud downsampling, which preserves critical object-related information while effectively filtering out irrelevant background points. Our method involves two steps: (1) Object Presence Detection, where we introduce an unsupervised density peak-based classifier and a supervised Na\"ive Bayes classifier to handle diverse scenarios, and (2) Sampling Budget Allocation, where we propose a strategy that selects object-relevant points while maintaining a high retention rate of object information. Extensive experiments on the KITTI and nuScenes datasets demonstrate that our method consistently outperforms state-of-the-art baselines in both efficiency and effectiveness across varying sampling rates. As a model-agnostic solution, our approach integrates seamlessly with diverse downstream models, making it a valuable and scalable addition to the 3D point cloud downsampling toolkit for AV applications.
Related papers
- Extending Dataset Pruning to Object Detection: A Variance-based Approach [0.0]
We present the first extension of classification pruning techniques to the object detection domain.<n>We propose tailored solutions, including a novel scoring method called Variance-based Prediction Score (VPS)<n>Our work bridges dataset pruning and object detection, paving the way for dataset pruning in complex vision tasks.
arXiv Detail & Related papers (2025-05-22T19:46:51Z) - CS-Net:Contribution-based Sampling Network for Point Cloud Simplification [50.55658910053004]
Point cloud sampling plays a crucial role in reducing computation costs and storage requirements for various vision tasks.<n>Traditional sampling methods, such as farthest point sampling, lack task-specific information.<n>We propose a contribution-based sampling network (CS-Net), where the sampling operation is formulated as a Top-k operation.
arXiv Detail & Related papers (2025-01-18T14:56:09Z) - The Why, When, and How to Use Active Learning in Large-Data-Driven 3D
Object Detection for Safe Autonomous Driving: An Empirical Exploration [1.2815904071470705]
entropy querying is a promising strategy for selecting data that enhances model learning in resource-constrained environments.
Our findings suggest that entropy querying is a promising strategy for selecting data that enhances model learning in resource-constrained environments.
arXiv Detail & Related papers (2024-01-30T00:14:13Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Active Learning for Object Detection with Non-Redundant Informative
Sampling [1.7602289331729377]
Our strategy integrates uncertainty and diversity-based selection principles into a joint selection objective.
Our proposed NORIS algorithm quantifies the impact of training with a sample on the informativeness of other similar samples.
Our strategy achieves a 20% and 30% reduction in labeling costs compared to random selection for PASCAL-VOC and KITTI.
arXiv Detail & Related papers (2023-07-17T11:55:20Z) - AcroFOD: An Adaptive Method for Cross-domain Few-shot Object Detection [59.10314662986463]
Cross-domain few-shot object detection aims to adapt object detectors in the target domain with a few annotated target data.
The proposed method achieves state-of-the-art performance on multiple benchmarks.
arXiv Detail & Related papers (2022-09-22T10:23:40Z) - Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving [45.405303803618]
We investigate diversity-based active learning (AL) as a potential solution to alleviate the annotation burden.
We propose a novel acquisition function that enforces spatial and temporal diversity in the selected samples.
We demonstrate the effectiveness of the proposed method on the nuScenes dataset and show that it outperforms existing AL strategies significantly.
arXiv Detail & Related papers (2022-05-16T14:21:30Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.