Toward Efficient Spiking Transformers: Synapse Pruning Meets Synergistic Learning-Based Compensation
- URL: http://arxiv.org/abs/2508.01992v1
- Date: Mon, 04 Aug 2025 02:19:38 GMT
- Title: Toward Efficient Spiking Transformers: Synapse Pruning Meets Synergistic Learning-Based Compensation
- Authors: Hongze Sun, Wuque Cai, Duo Chen, Shifeng Mao, Jiayi He, Zhenxing Wang, Dezhong Yao, Daqing Guo,
- Abstract summary: We propose combining synapse pruning with a synergistic learning-based compensation strategy to derive lightweight Transformer-based models.<n>Experiments on benchmark datasets demonstrate that the proposed methods significantly reduce model size and computational overhead while maintaining competitive performance.
- Score: 5.496016535669561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a foundational architecture of artificial intelligence models, Transformer has been recently adapted to spiking neural networks with promising performance across various tasks. However, existing spiking Transformer (ST)-based models require a substantial number of parameters and incur high computational costs, thus limiting their deployment in resource-constrained environments. To address these challenges, we propose combining synapse pruning with a synergistic learning-based compensation strategy to derive lightweight ST-based models. Specifically, two types of tailored pruning strategies are introduced to reduce redundancy in the weight matrices of ST blocks: an unstructured $\mathrm{L_{1}P}$ method to induce sparse representations, and a structured DSP method to induce low-rank representations. In addition, we propose an enhanced spiking neuron model, termed the synergistic leaky integrate-and-fire (sLIF) neuron, to effectively compensate for model pruning through synergistic learning between synaptic and intrinsic plasticity mechanisms. Extensive experiments on benchmark datasets demonstrate that the proposed methods significantly reduce model size and computational overhead while maintaining competitive performance. These results validate the effectiveness of the proposed pruning and compensation strategies in constructing efficient and high-performing ST-based models.
Related papers
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.<n>We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)<n>We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.<n>Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling [0.0]
Recurrent neural networks (RNNs) are central to sequence modeling tasks, yet their high computational complexity poses challenges for scalability and real-time deployment.<n>We introduce a novel framework that models RNNs as partially ordered sets (posets) and constructs corresponding dependency lattices.<n>By identifying meet irreducible neurons, our lattice-based pruning algorithm selectively retains critical connections while eliminating redundant ones.
arXiv Detail & Related papers (2025-02-23T10:11:38Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
This paper introduces a dynamic, error-bounded hierarchical matrix (H-matrix) compression method tailored for Physics-Informed Neural Networks (PINNs)
The proposed approach reduces the computational complexity and memory demands of large-scale physics-based models while preserving the essential properties of the Neural Tangent Kernel (NTK)
Empirical results demonstrate that this technique outperforms traditional compression methods, such as Singular Value Decomposition (SVD), pruning, and quantization, by maintaining high accuracy and improving generalization capabilities.
arXiv Detail & Related papers (2024-09-11T05:55:51Z) - LORTSAR: Low-Rank Transformer for Skeleton-based Action Recognition [4.375744277719009]
LORTSAR is applied to two leading Transformer-based models, "Hyperformer" and "STEP-CATFormer"
Our method can reduce the number of model parameters substantially with negligible degradation or even performance increase in recognition accuracy.
This confirms that SVD combined with post-compression fine-tuning can boost model efficiency, paving the way for more sustainable, lightweight, and high-performance technologies in human action recognition.
arXiv Detail & Related papers (2024-07-19T20:19:41Z) - Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion [4.716845031095804]
Transformer models can face practical limitations due to their high computational requirements.
Such models exhibit significant activation sparsity, which can be leveraged to reduce the inference cost by converting parts of the network into equivalent Mixture-of-Experts (MoE) layers.
We demonstrate that the efficiency of the conversion can be significantly enhanced by a proper regularization of the activation sparsity of the base model.
arXiv Detail & Related papers (2023-10-06T16:34:51Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - STN: Scalable Tensorizing Networks via Structure-Aware Training and
Adaptive Compression [10.067082377396586]
We propose Scalableizing Networks (STN), which adaptively adjust the model size and decomposition structure without retraining.
STN is compatible with arbitrary network architectures and achieves higher compression performance and flexibility over other tensorizing versions.
arXiv Detail & Related papers (2022-05-30T15:50:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.