LORTSAR: Low-Rank Transformer for Skeleton-based Action Recognition
- URL: http://arxiv.org/abs/2407.14655v1
- Date: Fri, 19 Jul 2024 20:19:41 GMT
- Title: LORTSAR: Low-Rank Transformer for Skeleton-based Action Recognition
- Authors: Soroush Oraki, Harry Zhuang, Jie Liang,
- Abstract summary: LORTSAR is applied to two leading Transformer-based models, "Hyperformer" and "STEP-CATFormer"
Our method can reduce the number of model parameters substantially with negligible degradation or even performance increase in recognition accuracy.
This confirms that SVD combined with post-compression fine-tuning can boost model efficiency, paving the way for more sustainable, lightweight, and high-performance technologies in human action recognition.
- Score: 4.375744277719009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity of state-of-the-art Transformer-based models for skeleton-based action recognition poses significant challenges in terms of computational efficiency and resource utilization. In this paper, we explore the application of Singular Value Decomposition (SVD) to effectively reduce the model sizes of these pre-trained models, aiming to minimize their resource consumption while preserving accuracy. Our method, LORTSAR (LOw-Rank Transformer for Skeleton-based Action Recognition), also includes a fine-tuning step to compensate for any potential accuracy degradation caused by model compression, and is applied to two leading Transformer-based models, "Hyperformer" and "STEP-CATFormer". Experimental results on the "NTU RGB+D" and "NTU RGB+D 120" datasets show that our method can reduce the number of model parameters substantially with negligible degradation or even performance increase in recognition accuracy. This confirms that SVD combined with post-compression fine-tuning can boost model efficiency, paving the way for more sustainable, lightweight, and high-performance technologies in human action recognition.
Related papers
- Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.
We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
A learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality.
A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model.
This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure.
arXiv Detail & Related papers (2024-06-10T11:00:26Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - Sine Activated Low-Rank Matrices for Parameter Efficient Learning [25.12262017296922]
We propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process.
Our method proves to be an enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF)
arXiv Detail & Related papers (2024-03-28T08:58:20Z) - Memory-Efficient Vision Transformers: An Activation-Aware Mixed-Rank
Compression Strategy [5.699098817569033]
This paper introduces an activation-aware model compression methodology that uses selective low-rank weight tensor approximations of different layers to reduce the parameter count of ViTs.
The presented method significantly reduces the parameter count of DeiT-B by 60% with less than 1% accuracy drop on the ImageNet dataset.
In addition to this, the presented compression technique can compress large DeiT/ViT models to have about the same model size as smaller DeiT/ViT variants while yielding up to 1.8% accuracy gain.
arXiv Detail & Related papers (2024-02-08T19:01:14Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - An Efficient Deep Learning Model for Automatic Modulation Recognition
Based on Parameter Estimation and Transformation [3.3941243094128035]
This letter proposes an efficient DL-AMR model based on phase parameter estimation and transformation.
Our model is more competitive in training time and test time than the benchmark models with similar recognition accuracy.
arXiv Detail & Related papers (2021-10-11T03:28:28Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.