論文の概要: Diagnosing Memorization in Chain-of-Thought Reasoning, One Token at a Time
- arxiv url: http://arxiv.org/abs/2508.02037v1
- Date: Mon, 04 Aug 2025 04:06:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.165903
- Title: Diagnosing Memorization in Chain-of-Thought Reasoning, One Token at a Time
- Title(参考訳): チェーン・オブ・サート・推論における記憶の診断
- Authors: Huihan Li, You Chen, Siyuan Wang, Yixin He, Ninareh Mehrabi, Rahul Gupta, Xiang Ren,
- Abstract要約: 本稿では,覚書レベル同定のための新しいフレームワークSTIMを紹介する。
ローカルな暗記がしばしばエラーの主要な要因であることを示し、間違ったトークンの最大67%に繋がる。
STIMは、モデル推論の診断と改善のための強力なツールを提供し、他の構造化ステップワイズ生成タスクに一般化することができる。
- 参考スコア(独自算出の注目度): 39.76650763934455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) perform well on reasoning benchmarks but often fail when inputs alter slightly, raising concerns about the extent to which their success relies on memorization. This issue is especially acute in Chain-of-Thought (CoT) reasoning, where spurious memorized patterns can trigger intermediate errors that cascade into incorrect final answers. We introduce STIM, a novel framework for Source-aware Token-level Identification of Memorization, which attributes each token in a reasoning chain to one of multiple memorization sources - local, mid-range, or long-range - based on their statistical co-occurrence with the token in the pretraining corpus. Our token-level analysis across tasks and distributional settings reveals that models rely more on memorization in complex or long-tail cases, and that local memorization is often the dominant driver of errors, leading to up to 67% of wrong tokens. We also show that memorization scores from STIM can be effective in predicting the wrong tokens in the wrong reasoning step. STIM offers a powerful tool for diagnosing and improving model reasoning and can generalize to other structured step-wise generation tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は推論ベンチマークでうまく機能するが、入力がわずかに変更されると失敗することが多い。
この問題は特にCoT(Chain-of-Thought)推論において急激であり、急激な記憶パターンがカスケードを誤った最終回答に導く中間エラーを引き起こす可能性がある。
提案手法は,事前学習コーパスにおけるトークンと統計的共起に基づいて,各トークンを複数の記憶源(局所,中距離,長距離)の1つとみなす。
タスクや分散設定のトークンレベルの分析では、複雑なケースや長いケースでは、モデルの方が暗記に依存しており、ローカルな暗記がしばしばエラーの主要な要因であり、誤ったトークンの最大67%につながります。
また,STIMの暗記スコアは誤った推論ステップにおける間違ったトークンの予測に有効であることを示す。
STIMは、モデル推論の診断と改善のための強力なツールを提供し、他の構造化ステップワイズ生成タスクに一般化することができる。
関連論文リスト
- On the Bias of Next-Token Predictors Toward Systematically Inefficient Reasoning: A Shortest-Path Case Study [4.319482898846564]
大規模言語モデルにおける推論を改善するための2つの重要な要因について検討する。
我々は、カスタムトークン化器を用いて、質問-トレース-回答三重項に対してデコーダのみの変換器を訓練する。
同じトレーニングの予算で、非効率なトレースで訓練されたモデルは、目に見えないグラフよりも一般化される。
論文 参考訳(メタデータ) (2025-07-07T18:00:06Z) - Think Clearly: Improving Reasoning via Redundant Token Pruning [57.01254508252785]
推論過程における冗長性を意図的に除去することで、性能が大幅に向上することを示す。
本手法は, 推論集約型ベンチマークにおいて, トレーニングを伴わずに, 全体的な精度を著しく向上することを示した。
論文 参考訳(メタデータ) (2025-06-17T06:04:01Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thoughtはステップバイステップの問題解決を促すが、中間出力の過剰な冗長性を犠牲にすることが多い。
我々は,認知にインスパイアされた推論パラダイムを言語制約と統合する促進フレームワークであるSketch-of-Thought(SoT)を提案する。
SoTはトークンを最大78%削減し、15の推論データセットで最小限の精度損失を発生させる。
論文 参考訳(メタデータ) (2025-03-07T06:57:17Z) - Unveiling Reasoning Thresholds in Language Models: Scaling, Fine-Tuning, and Interpretability through Attention Maps [3.8936716676293917]
本研究では,異なるモデルサイズと訓練データを持つデコーダのみの変換言語モデルのコンテキスト内学習能力について検討する。
我々は,複数の質問応答におけるコモンセンス推論や帰納的推論といったタスクにおいて,推論性能が著しく向上する重要なパラメータしきい値(160億)を同定する。
論文 参考訳(メタデータ) (2025-02-21T00:48:32Z) - Detecting Memorization in Large Language Models [0.0]
大規模言語モデル(LLM)は自然言語処理において驚くべき結果を得たが、トレーニングデータの一部を記憶する傾向にある。
従来の暗記検出方法は出力確率や損失関数に依存している。
LLM内のニューロンの活性化を調べることによって,記憶を正確に検出する解析手法を提案する。
論文 参考訳(メタデータ) (2024-12-02T00:17:43Z) - On Memorization of Large Language Models in Logical Reasoning [70.94164038947078]
大きな言語モデル(LLM)は、挑戦的な推論ベンチマークで優れたパフォーマンスを達成するが、基本的な推論ミスを発生させることもできる。
1つの仮説は、より高度でほぼ飽和した性能は、類似した問題の記憶が原因ではないかというものである。
微調整は暗記を重くするが,常に一般化性能を向上することを示す。
論文 参考訳(メタデータ) (2024-10-30T15:31:54Z) - Demystifying Verbatim Memorization in Large Language Models [67.49068128909349]
大きな言語モデル(LLM)は、しばしば長いシーケンスを冗長に記憶し、しばしば深刻な法的およびプライバシー上の意味を持つ。
我々は, Pythia チェックポイントからのプレトレーニングをインジェクトシーケンスで継続することにより, 制御された環境下での動詞の暗記を学習する枠組みを開発する。
その結果,(1) 動詞の暗記には非自明な繰り返しが必要であり,(2) 後続の(おそらくはより良い)チェックポイントは,アウト・オブ・ディストリビューション・シーケンスであっても,動詞の列を暗記する傾向にあることがわかった。
論文 参考訳(メタデータ) (2024-07-25T07:10:31Z) - Exploring Memorization in Fine-tuned Language Models [53.52403444655213]
我々は,タスク間の微調整中に,言語モデルの暗記を探索する最初の包括的分析を行う。
オープンソースと、さまざまなタスクにまたがる独自の微調整LMによる研究は、暗記が様々な微調整タスクの間に強い相違を示すことを示している。
本稿では,この課題の相違をスパース符号化理論を用いて直感的に説明し,暗記と注目スコア分布との強い相関関係を明らかにする。
論文 参考訳(メタデータ) (2023-10-10T15:41:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。