ScrewSplat: An End-to-End Method for Articulated Object Recognition
- URL: http://arxiv.org/abs/2508.02146v1
- Date: Mon, 04 Aug 2025 07:45:31 GMT
- Title: ScrewSplat: An End-to-End Method for Articulated Object Recognition
- Authors: Seungyeon Kim, Junsu Ha, Young Hun Kim, Yonghyeon Lee, Frank C. Park,
- Abstract summary: We introduce ScrewSplat, a simple end-to-end method that operates solely on RGB observations.<n>We demonstrate that our method achieves state-of-the-art recognition accuracy across a diverse set of articulated objects.
- Score: 13.128395758408189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Articulated object recognition -- the task of identifying both the geometry and kinematic joints of objects with movable parts -- is essential for enabling robots to interact with everyday objects such as doors and laptops. However, existing approaches often rely on strong assumptions, such as a known number of articulated parts; require additional inputs, such as depth images; or involve complex intermediate steps that can introduce potential errors -- limiting their practicality in real-world settings. In this paper, we introduce ScrewSplat, a simple end-to-end method that operates solely on RGB observations. Our approach begins by randomly initializing screw axes, which are then iteratively optimized to recover the object's underlying kinematic structure. By integrating with Gaussian Splatting, we simultaneously reconstruct the 3D geometry and segment the object into rigid, movable parts. We demonstrate that our method achieves state-of-the-art recognition accuracy across a diverse set of articulated objects, and further enables zero-shot, text-guided manipulation using the recovered kinematic model.
Related papers
- ObjectGS: Object-aware Scene Reconstruction and Scene Understanding via Gaussian Splatting [54.92763171355442]
ObjectGS is an object-aware framework that unifies 3D scene reconstruction with semantic understanding.<n>We show through experiments that ObjectGS outperforms state-of-the-art methods on open-vocabulary and panoptic segmentation tasks.
arXiv Detail & Related papers (2025-07-21T10:06:23Z) - Self-Supervised Multi-Part Articulated Objects Modeling via Deformable Gaussian Splatting and Progressive Primitive Segmentation [23.18517560629462]
We introduce DeGSS, a unified framework that encodes articulated objects as deformable 3D Gaussian fields, embedding geometry, appearance, and motion in one compact representation.<n>To evaluate generalization and realism, we enlarge the synthetic PartNet-Mobility benchmark and release RS-Art, a real-to-sim dataset that pairs RGB captures with accurately reverse-engineered 3D models.
arXiv Detail & Related papers (2025-06-11T12:32:16Z) - Object-X: Learning to Reconstruct Multi-Modal 3D Object Representations [112.29763628638112]
Object-X is a versatile multi-modal 3D representation framework.<n>It can encoding rich object embeddings and decoding them back into geometric and visual reconstructions.<n>It supports a range of downstream tasks, including scene alignment, single-image 3D object reconstruction, and localization.
arXiv Detail & Related papers (2025-06-05T09:14:42Z) - IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.<n>We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.<n>We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - Detection Based Part-level Articulated Object Reconstruction from Single RGBD Image [52.11275397911693]
We propose an end-to-end trainable, cross-category method for reconstructing multiple man-made articulated objects from a single RGBD image.<n>We depart from previous works that rely on learning instance-level latent space, focusing on man-made articulated objects with predefined part counts.<n>Our method successfully reconstructs variously structured multiple instances that previous works cannot handle, and outperforms prior works in shape reconstruction and kinematics estimation.
arXiv Detail & Related papers (2025-04-04T05:08:04Z) - Collaborative Learning for 3D Hand-Object Reconstruction and Compositional Action Recognition from Egocentric RGB Videos Using Superquadrics [31.819336585007104]
We propose to leverage superquadrics as an alternative 3D object representation to bounding boxes.<n>We demonstrate their effectiveness on both template-free object reconstruction and action recognition tasks.<n>We also study the compositionality of actions by considering a more challenging task where the training combinations of verbs and nouns do not overlap with the testing split.
arXiv Detail & Related papers (2025-01-13T07:26:05Z) - Kinematics-based 3D Human-Object Interaction Reconstruction from Single View [10.684643503514849]
Existing methods simply predict the body poses merely rely on network training on some indoor datasets.
We propose a kinematics-based method that can drive the joints of human body to the human-object contact regions accurately.
arXiv Detail & Related papers (2024-07-19T05:44:35Z) - 3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects [13.58353565350936]
We contribute methodology to jointly estimate the geometry and pose of objects grasped by a robot.
Our method transforms the estimated geometry into the robot's coordinate frame.
We empirically evaluate our approach on a robot manipulator holding a diverse set of real-world objects.
arXiv Detail & Related papers (2024-07-14T21:02:55Z) - Learning Explicit Contact for Implicit Reconstruction of Hand-held
Objects from Monocular Images [59.49985837246644]
We show how to model contacts in an explicit way to benefit the implicit reconstruction of hand-held objects.
In the first part, we propose a new subtask of directly estimating 3D hand-object contacts from a single image.
In the second part, we introduce a novel method to diffuse estimated contact states from the hand mesh surface to nearby 3D space.
arXiv Detail & Related papers (2023-05-31T17:59:26Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
Our work aims to reconstruct hand-held objects given a single RGB image.
In contrast to prior works that typically assume known 3D templates and reduce the problem to 3D pose estimation, our work reconstructs generic hand-held object without knowing their 3D templates.
arXiv Detail & Related papers (2022-04-14T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.