Skeleton-Guided Learning for Shortest Path Search
- URL: http://arxiv.org/abs/2508.02270v1
- Date: Mon, 04 Aug 2025 10:21:52 GMT
- Title: Skeleton-Guided Learning for Shortest Path Search
- Authors: Tiantian Liu, Xiao Li, Huan Li, Hua Lu, Christian S. Jensen, Jianliang Xu,
- Abstract summary: Shortest path search is a core operation in graph-based applications.<n>We propose a versatile learning-based framework for shortest path search on generic graphs.
- Score: 31.51778160288742
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Shortest path search is a core operation in graph-based applications, yet existing methods face important limitations. Classical algorithms such as Dijkstra's and A* become inefficient as graphs grow more complex, while index-based techniques often require substantial preprocessing and storage. Recent learning-based approaches typically focus on spatial graphs and rely on context-specific features like geographic coordinates, limiting their general applicability. We propose a versatile learning-based framework for shortest path search on generic graphs, without requiring domain-specific features. At the core of our approach is the construction of a skeleton graph that captures multi-level distance and hop information in a compact form. A Skeleton Graph Neural Network (SGNN) operates on this structure to learn node embeddings and predict distances and hop lengths between node pairs. These predictions support LSearch, a guided search algorithm that uses model-driven pruning to reduce the search space while preserving accuracy. To handle larger graphs, we introduce a hierarchical training strategy that partitions the graph into subgraphs with individually trained SGNNs. This structure enables HLSearch, an extension of our method for efficient path search across graph partitions. Experiments on five diverse real-world graphs demonstrate that our framework achieves strong performance across graph types, offering a flexible and effective solution for learning-based shortest path search.
Related papers
- Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search [31.68823192070739]
This work studies a central extremal graph theory problem inspired by a 1975 conjecture of ErdHos.
It aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles.
arXiv Detail & Related papers (2023-11-06T22:29:55Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Learning Graph Search Heuristics [48.83557172525969]
We present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigations from data.
Our function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time.
Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5% on average.
arXiv Detail & Related papers (2022-12-07T22:28:00Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
arXiv Detail & Related papers (2022-07-21T04:47:21Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - GLSearch: Maximum Common Subgraph Detection via Learning to Search [33.9052190473029]
We propose GLSearch, a Graph Neural Network (GNN) based learning to search model.
Our model is built upon the branch and bound bound, which selects one pair of nodes from the two input graphs to expand at a time.
Our GLSearch can be potentially extended to solve many other problems with constraints on graphs.
arXiv Detail & Related papers (2020-02-08T10:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.