論文の概要: Language Model Guided Reinforcement Learning in Quantitative Trading
- arxiv url: http://arxiv.org/abs/2508.02366v1
- Date: Mon, 04 Aug 2025 12:52:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.337777
- Title: Language Model Guided Reinforcement Learning in Quantitative Trading
- Title(参考訳): 量的トレーディングにおける言語モデル指導強化学習
- Authors: Adam Darmanin, Vince Vella,
- Abstract要約: 大規模言語モデル(LLM)は、最近、戦略的推論とマルチモーダルな金融信号解釈を実証している。
LLMがRLエージェントを行動に導くための高レベルのトレーディング戦略を生成するハイブリッドシステムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithmic trading requires short-term decisions aligned with long-term financial goals. While reinforcement learning (RL) has been explored for such tactical decisions, its adoption remains limited by myopic behavior and opaque policy rationale. In contrast, large language models (LLMs) have recently demonstrated strategic reasoning and multi-modal financial signal interpretation when guided by well-designed prompts. We propose a hybrid system where LLMs generate high-level trading strategies to guide RL agents in their actions. We evaluate (i) the rationale of LLM-generated strategies via expert review, and (ii) the Sharpe Ratio (SR) and Maximum Drawdown (MDD) of LLM-guided agents versus unguided baselines. Results show improved return and risk metrics over standard RL.
- Abstract(参考訳): アルゴリズム取引は、長期的な財政目標に沿った短期的な決定を必要とする。
このような戦術的決定のために強化学習(RL)が研究されているが、その採用は筋活動や不透明な政策論理によって制限されている。
対照的に、大規模言語モデル(LLM)は、よく設計されたプロンプトによって導かれるとき、戦略的推論とマルチモーダルな金融信号解釈を最近実証している。
LLMがRLエージェントを行動に導くための高レベルのトレーディング戦略を生成するハイブリッドシステムを提案する。
評価
一 専門家レビューによるLCM作成戦略の理論的根拠及び
(II) LLM誘導剤のシャープ比(SR)および最大ドローダウン(MDD)対無誘導ベースライン。
その結果、標準RLよりもリターンとリスクの指標が改善された。
関連論文リスト
- To Trade or Not to Trade: An Agentic Approach to Estimating Market Risk Improves Trading Decisions [0.0]
大規模言語モデル(LLM)はますますエージェントフレームワークにデプロイされている。
我々は LLM を用いて金融時系列の微分方程式を反復的に発見するエージェントシステムを開発した。
モデルインフォームドトレーディング戦略は標準LLMエージェントよりも優れていた。
論文 参考訳(メタデータ) (2025-07-11T13:29:32Z) - Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL [62.984693936073974]
大きな言語モデル(LLM)は、質問応答や対話といったタスクに優れています。
交渉や説得のような相互作用を必要とする複雑なタスクは、さらなる長期の推論と計画を必要とする。
目的条件付き値関数を用いて LLM エージェントの推論を導出する手法を提案する。
論文 参考訳(メタデータ) (2025-05-23T16:51:54Z) - Can LLM-based Financial Investing Strategies Outperform the Market in Long Run? [5.968528974532717]
大規模言語モデル(LLM)は、資産価格のタスクや株式取引アプリケーションに利用されており、AIエージェントが非構造化の財務データから投資決定を生成することができる。
我々は、より長い期間にわたるタイミングベースの戦略とより大きなシンボルの宇宙を評価するバックテストフレームワークであるFINSABERを提案し、それらの一般化性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2025-05-11T18:02:21Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
Reinforced Meta-thinking Agents (ReMA) を導入し,Large Language Models (LLMs) の推論からメタ思考行動を求める。
ReMAは、推論プロセスを2つの階層的なエージェントに分解する。戦略上の監視と計画を生成するハイレベルなメタ思考エージェントと、詳細な実行のための低レベルな推論エージェントである。
単ターン実験による実験結果から、ReMAは複雑な推論タスクにおいて単エージェントRLベースラインよりも優れることが示された。
論文 参考訳(メタデータ) (2025-03-12T16:05:31Z) - EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
戦略的推論のための明示的なポリシー最適化(EPO)を提案する。
我々は,マルチターン強化学習(RL)による戦略的推論モデルを訓練し,プロセス報酬と反復的な自己プレイを活用する。
本研究は, EPOに出現する様々な協調的推論機構と, 新規戦略の創出における有効性を明らかにするものである。
論文 参考訳(メタデータ) (2025-02-18T03:15:55Z) - How Strategic Agents Respond: Comparing Analytical Models with LLM-Generated Responses in Strategic Classification [9.296248945826084]
我々は,大規模言語モデルによって生成された戦略的アドバイスを用いて,戦略分類における人間のエージェント応答をシミュレートする。
我々は、雇用、ローン申請、学校入学、個人所得、公的支援プログラムの5つの重要なSCシナリオについて検討する。
次に、得られたエージェント応答と、既存の理論モデルによって生成された最良の応答を比較する。
論文 参考訳(メタデータ) (2025-01-20T01:39:03Z) - Guiding Reinforcement Learning Using Uncertainty-Aware Large Language Models [1.2233495442213964]
大きな言語モデル(LLMs)は、RLサンプルの非効率を軽減し、人間のトレーナーを置き換える可能性のある代替手段を提供する。
LLMアドバイスの信頼性を高めるためにモンテカルロ・ドロップアウトを用いた校正誘導システムにより,この制限に対処する。
また、動的モデル平均エントロピーに基づく新しいRLポリシー形成手法を開発し、ガイダンスの不確実性に応じてLLMがRLポリシーに与える影響を調整する。
論文 参考訳(メタデータ) (2024-11-15T22:00:29Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
強化学習技術は量的取引において顕著な成功を収めた。
既存のRLベースのマーケットメイキング手法のほとんどは、単価レベルの戦略の最適化に重点を置いている。
Imitative Market Maker (IMM) は、準最適信号に基づく専門家の知識と直接的な政策相互作用の両方を活用する新しいRLフレームワークである。
論文 参考訳(メタデータ) (2023-08-17T11:04:09Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。