論文の概要: GR-Gaussian: Graph-Based Radiative Gaussian Splatting for Sparse-View CT Reconstruction
- arxiv url: http://arxiv.org/abs/2508.02408v2
- Date: Wed, 06 Aug 2025 15:26:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 13:27:10.381119
- Title: GR-Gaussian: Graph-Based Radiative Gaussian Splatting for Sparse-View CT Reconstruction
- Title(参考訳): GR-Gaussian- Graph-based Radiative Gaussian Splatting for Sparse-View CT
- Authors: Yikuang Yuluo, Yue Ma, Kuan Shen, Tongtong Jin, Wang Liao, Yangpu Ma, Fuquan Wang,
- Abstract要約: 我々は,CT再構成のためのグラフベース3次元ガウス平滑化フレームワークGR-Gaussianを提案する。
GR-Gaussianは針状アーティファクトを抑制し、スパースビュー条件下での再構成精度を向上させる。
X-3Dおよび実世界のデータセットに関する実験は、GR-Gaussianの有効性を検証する。
- 参考スコア(独自算出の注目度): 1.2506009236700528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) has emerged as a promising approach for CT reconstruction. However, existing methods rely on the average gradient magnitude of points within the view, often leading to severe needle-like artifacts under sparse-view conditions. To address this challenge, we propose GR-Gaussian, a graph-based 3D Gaussian Splatting framework that suppresses needle-like artifacts and improves reconstruction accuracy under sparse-view conditions. Our framework introduces two key innovations: (1) a Denoised Point Cloud Initialization Strategy that reduces initialization errors and accelerates convergence; and (2) a Pixel-Graph-Aware Gradient Strategy that refines gradient computation using graph-based density differences, improving splitting accuracy and density representation. Experiments on X-3D and real-world datasets validate the effectiveness of GR-Gaussian, achieving PSNR improvements of 0.67 dB and 0.92 dB, and SSIM gains of 0.011 and 0.021. These results highlight the applicability of GR-Gaussian for accurate CT reconstruction under challenging sparse-view conditions.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS) はCT再建に有望なアプローチである。
しかし、既存の手法はビュー内の点の平均勾配度に依存しており、しばしばスパースビュー条件下では針状のアーティファクトが発生する。
この課題に対処するために,針状アーティファクトを抑圧し,スパースビュー条件下での再構成精度を向上させるグラフベースの3次元ガウス製3次元切削フレームワークGR-Gaussianを提案する。
1)初期化エラーを減らし収束を加速するDenoized Point Cloud Initialization Strategy,2)グラフベースの密度差による勾配計算を洗練し、分割精度と密度表現を改善するPixel-Graph-Aware Gradient Strategy,である。
X-3Dおよび実世界のデータセットによる実験では、GR-ガウシアンの有効性が検証され、PSNRの改善は0.67dBと0.92dB、SSIMの改善は0.011と0.021である。
以上の結果から,スパース・ビュー条件下での正確なCT再構成におけるGR-Gaussianの有用性が示唆された。
関連論文リスト
- UGOD: Uncertainty-Guided Differentiable Opacity and Soft Dropout for Enhanced Sparse-View 3DGS [8.78995910690481]
3D Gaussian Splatting (3DGS) は新規ビュー合成(NVS)の競争的アプローチとなっている
本稿では,ガウスの適応重み付けがレンダリング品質に与える影響について検討する。
提案手法は,MipNeRF 360データセットにおいて3.27%のPSNR改善を実現する。
論文 参考訳(メタデータ) (2025-08-07T01:42:22Z) - Gaussian Herding across Pens: An Optimal Transport Perspective on Global Gaussian Reduction for 3DGS [15.072715525951526]
本稿では,グローバルなガウス混合還元として3DGSのコンパクト化を推し進める,新しい最適輸送視点を提案する。
具体的には、まず、KD-ツリー分割上の複合輸送のばらつきを最小化し、コンパクトな幾何学的表現を生成する。
本手法は,バニラおよび加速3DGSパイプラインの任意の段階に適用可能であり,軽量なニューラルレンダリングへの効率的かつ非依存的な経路を提供する。
論文 参考訳(メタデータ) (2025-06-11T09:04:44Z) - Steepest Descent Density Control for Compact 3D Gaussian Splatting [72.54055499344052]
3D Gaussian Splatting (3DGS)は、強力なリアルタイム高解像度ノベルビューとして登場した。
本稿では,3DGSの密度制御をデミストし,改良する理論的枠組みを提案する。
我々はSteepGSを導入し、コンパクトな点雲を維持しながら損失を最小限に抑える原則的戦略である、最も急な密度制御を取り入れた。
論文 参考訳(メタデータ) (2025-05-08T18:41:38Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) は、新しいビュー合成において大きな進歩を遂げてきたが、ガウスプリミティブのかなりの数によって制限されている。
近年の手法では、密度の高いガウスの記憶容量を圧縮することでこの問題に対処しているが、レンダリングの品質と効率の維持には失敗している。
本稿では,ガウスの原始体を表現するためにガウスのプロトタイプを学習するProtoGSを提案し,視覚的品質を犠牲にすることなくガウスの総量を大幅に削減する。
論文 参考訳(メタデータ) (2025-03-21T18:55:14Z) - GP-GS: Gaussian Processes for Enhanced Gaussian Splatting [15.263608848427136]
本稿では,新しい3次元再構成フレームワークであるGaussian Processes enhanced Gaussian Splatting (GP-GS)を提案する。
GP-GSはスパース構造-運動点雲の適応的および不確実性誘導密度化を可能にする。
合成および実世界のデータセットで行った実験は、提案フレームワークの有効性と実用性を検証する。
論文 参考訳(メタデータ) (2025-02-04T12:50:16Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
任意のスケールでガウスを適応させる統一最適化法を提案する。
ミップマップ技術に触発されて、ターゲットスケールのための擬似基底構造を設計し、3次元ガウスアンにスケール情報を注入するスケール一貫性誘導損失を提案する。
本手法は,PSNRの3DGSを,ズームインで平均9.25dB,ズームアウトで平均10.40dBで上回っている。
論文 参考訳(メタデータ) (2024-08-12T16:49:22Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針状アーティファクト、準最適ジオメトリー、不正確な正常といった課題に遭遇する。
正規化として有効ランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - End-to-End Rate-Distortion Optimized 3D Gaussian Representation [33.20840558425759]
本稿では,コンパクトな3次元ガウス学習をエンドツーエンドのレート・ディストーション最適化問題として定式化する。
動的プルーニングとエントロピー制約ベクトル量子化(ECVQ)を導入し、同時に速度と歪みを最適化する。
RDO-Gaussianが40倍の3Dガウスサイズを大幅に縮小することを示すため,実シーンと合成シーンの両方で本手法の有効性を確認した。
論文 参考訳(メタデータ) (2024-04-09T14:37:54Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをよりコンパクトなフォーマットに変換する方法である。
ネットワーク・プルーニングにインスパイアされたLightGaussianは、ガウシアンをシーン再構築において最小限のグローバルな重要性で特定した。
LightGaussian は 3D-GS フレームワークで FPS を 144 から 237 に上げながら,平均 15 倍の圧縮率を達成する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。