論文の概要: UGOD: Uncertainty-Guided Differentiable Opacity and Soft Dropout for Enhanced Sparse-View 3DGS
- arxiv url: http://arxiv.org/abs/2508.04968v1
- Date: Thu, 07 Aug 2025 01:42:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.686538
- Title: UGOD: Uncertainty-Guided Differentiable Opacity and Soft Dropout for Enhanced Sparse-View 3DGS
- Title(参考訳): UGOD:Sparse-View 3DGSの精度向上のための不確実性ガイド付き差別化OpacityとSoft Dropout
- Authors: Zhihao Guo, Peng Wang, Zidong Chen, Xiangyu Kong, Yan Lyu, Guanyu Gao, Liangxiu Han,
- Abstract要約: 3D Gaussian Splatting (3DGS) は新規ビュー合成(NVS)の競争的アプローチとなっている
本稿では,ガウスの適応重み付けがレンダリング品質に与える影響について検討する。
提案手法は,MipNeRF 360データセットにおいて3.27%のPSNR改善を実現する。
- 参考スコア(独自算出の注目度): 8.78995910690481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) has become a competitive approach for novel view synthesis (NVS) due to its advanced rendering efficiency through 3D Gaussian projection and blending. However, Gaussians are treated equally weighted for rendering in most 3DGS methods, making them prone to overfitting, which is particularly the case in sparse-view scenarios. To address this, we investigate how adaptive weighting of Gaussians affects rendering quality, which is characterised by learned uncertainties proposed. This learned uncertainty serves two key purposes: first, it guides the differentiable update of Gaussian opacity while preserving the 3DGS pipeline integrity; second, the uncertainty undergoes soft differentiable dropout regularisation, which strategically transforms the original uncertainty into continuous drop probabilities that govern the final Gaussian projection and blending process for rendering. Extensive experimental results over widely adopted datasets demonstrate that our method outperforms rivals in sparse-view 3D synthesis, achieving higher quality reconstruction with fewer Gaussians in most datasets compared to existing sparse-view approaches, e.g., compared to DropGaussian, our method achieves 3.27\% PSNR improvements on the MipNeRF 360 dataset.
- Abstract(参考訳): 3次元ガウス散乱(3DGS)は、3次元ガウス射影とブレンディングによる高度なレンダリング効率のため、新規ビュー合成(NVS)の競争的アプローチとなっている。
しかし、ガウシアンはほとんどの3DGS法ではレンダリングに等しく重み付けされているため、過度に適合する傾向があり、特にスパースビューのシナリオではそうである。
そこで本稿では,ガウスの適応重み付けがレンダリング品質に与える影響について検討する。
この学習された不確実性は、まず3DGSパイプラインの整合性を維持しながらガウスの不透明性の異なる更新を導くこと、そして第2に、不確実性は柔らかに微分可能なドロップアウト規則化を行い、それによって元の不確実性を戦略的に連続的なドロップ確率に変換し、最終的なガウス射影とレンダリングのブレンディングプロセスを管理する。
広範に採用されているデータセットに対する大規模な実験結果から、我々の手法はスパースビューの3D合成においてライバルよりも優れており、既存のスパースビューのアプローチであるDropGaussianと比較して、ほとんどのデータセットにおいてガウスアンよりも低い品質の再構築を実現しており、MipNeRF 360データセットでは3.27 %のPSNR改善が達成されている。
関連論文リスト
- Metropolis-Hastings Sampling for 3D Gaussian Reconstruction [24.110069582862465]
3次元ガウス平滑化のための適応型サンプリングフレームワーク(3DGS)を提案する。
我々の枠組みは, 確率的サンプリングプロセスとして, デンシフィケーションとプルーニングを改質することで限界を克服する。
提案手法は,最先端モデルの視線合成品質を適度に上回りながら,計算効率を向上させる。
論文 参考訳(メタデータ) (2025-06-15T19:12:37Z) - Uncertainty-Aware Normal-Guided Gaussian Splatting for Surface Reconstruction from Sparse Image Sequences [21.120659841877508]
3D Gaussian Splatting (3DGS)は、新規なビュー合成において印象的なレンダリング性能を達成した。
3DGSパイプライン内の幾何的不確かさを定量化するために,不確かさを意識した正規誘導型ガウス格子(UNG-GS)を提案する。
UNG-GSはスパース配列と高密度シーケンスの両方で最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2025-03-14T08:18:12Z) - ResGS: Residual Densification of 3D Gaussian for Efficient Detail Recovery [11.706262924395768]
そこで我々は, 残留分断法を新たに導入し, 残留分断法としてガウシアンを付加した。
我々のアプローチは、詳細を適応的に検索し、欠落した幾何学を補完することができる。
論文 参考訳(メタデータ) (2024-12-10T13:19:27Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
高品質な再構成のための神経信号距離場(SDF)とプリミティブを結合する新しい手法であるMonoGSDFを紹介する。
任意のスケールのシーンを扱うために,ロバストな一般化のためのスケーリング戦略を提案する。
実世界のデータセットの実験は、効率を保ちながら、以前の方法よりも優れています。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis [53.702118455883095]
本稿では,ガウススプラッティングを用いたスパースビューから新しいビューを合成する新しい手法を提案する。
私たちのキーとなるアイデアは、両眼画像間の両眼立体的一貫性に固有の自己超越を探索することにあります。
我々の手法は最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-10-24T15:10:27Z) - MVG-Splatting: Multi-View Guided Gaussian Splatting with Adaptive Quantile-Based Geometric Consistency Densification [8.099621725105857]
マルチビューを考慮したソリューションであるMVG-Splattingを紹介する。
付加的な密度化のレベルを動的に決定する適応的量子化法を提案する。
このアプローチは3次元再構成プロセス全体の忠実度と精度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-16T15:24:01Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。