Communication and Computation Efficient Split Federated Learning in O-RAN
- URL: http://arxiv.org/abs/2508.02534v1
- Date: Mon, 04 Aug 2025 15:42:53 GMT
- Title: Communication and Computation Efficient Split Federated Learning in O-RAN
- Authors: Shunxian Gu, Chaoqun You, Bangbang Ren, Deke Guo,
- Abstract summary: We propose SplitMe, an SFL framework that exploits mutual learning to alternately and independently train the near-RT-RIC's model and the non-RT-RIC's inverse model.<n>Our numerical results demonstrate that SplitMe remarkably outperforms FL frameworks like SFL, FedAvg and O-RANFed regarding costs and convergence.
- Score: 10.853675449639281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The hierarchical architecture of Open Radio Access Network (O-RAN) has enabled a new Federated Learning (FL) paradigm that trains models using data from non- and near-real-time (near-RT) Radio Intelligent Controllers (RICs). However, the ever-increasing model size leads to longer training time, jeopardizing the deadline requirements for both non-RT and near-RT RICs. To address this issue, split federated learning (SFL) offers an approach by offloading partial model layers from near-RT-RIC to high-performance non-RT-RIC. Nonetheless, its deployment presents two challenges: (i) Frequent data/gradient transfers between near-RT-RIC and non-RT-RIC in SFL incur significant communication cost in O-RAN. (ii) Proper allocation of computational and communication resources in O-RAN is vital to satisfying the deadline and affects SFL convergence. Therefore, we propose SplitMe, an SFL framework that exploits mutual learning to alternately and independently train the near-RT-RIC's model and the non-RT-RIC's inverse model, eliminating frequent transfers. The ''inverse'' of the inverse model is derived via a zeroth-order technique to integrate the final model. Then, we solve a joint optimization problem for SplitMe to minimize overall resource costs with deadline-aware selection of near-RT-RICs and adaptive local updates. Our numerical results demonstrate that SplitMe remarkably outperforms FL frameworks like SFL, FedAvg and O-RANFed regarding costs and convergence.
Related papers
- FedMeld: A Model-dispersal Federated Learning Framework for Space-ground Integrated Networks [29.49615352723995]
Space-ground integrated networks (SGINs) are expected to deliver artificial intelligence (AI) services to every corner of the world.<n>One mission of SGINs is to support federated learning (FL) at a global scale.<n>We propose an infrastructure-free federated learning framework based on a model dispersal (FedMeld) strategy.
arXiv Detail & Related papers (2024-12-23T02:58:12Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks [15.195798715517315]
Split federated learning (SFL) is a promising solution by of floading the primary training workload to a server via model partitioning.<n>We propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems.
arXiv Detail & Related papers (2024-03-19T19:05:24Z) - Communication Resources Constrained Hierarchical Federated Learning for
End-to-End Autonomous Driving [67.78611905156808]
This paper proposes an optimization-based Communication Resource Constrained Hierarchical Federated Learning framework.
Results show that the proposed CRCHFL both accelerates the convergence rate and enhances the generalization of federated learning autonomous driving model.
arXiv Detail & Related papers (2023-06-28T12:44:59Z) - Delay-Aware Hierarchical Federated Learning [7.292078085289465]
The paper introduces delay-aware hierarchical federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training.
During global synchronization, the cloud server consolidates local models with an outdated global model using a convex control algorithm.
Numerical evaluations show DFL's superior performance in terms of faster global model, reduced convergence resource, and evaluations against communication delays.
arXiv Detail & Related papers (2023-03-22T09:23:29Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
arXiv Detail & Related papers (2021-08-31T08:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.