Collaborative Enhancement Network for Low-quality Multi-spectral Vehicle Re-identification
- URL: http://arxiv.org/abs/2504.14877v1
- Date: Mon, 21 Apr 2025 06:07:32 GMT
- Title: Collaborative Enhancement Network for Low-quality Multi-spectral Vehicle Re-identification
- Authors: Aihua Zheng, Yongqi Sun, Zi Wang, Chenglong Li, Jin Tang,
- Abstract summary: The performance of multi-spectral vehicle Re-identification (ReID) is significantly degraded when some important cues in visible, near infrared and thermal infrared spectra are lost.<n>Existing methods generate or enhance missing details in low-quality spectra data using the high-quality one, generally called the primary spectrum.<n>We propose the Collaborative Enhancement Network (CoEN), which generates a high-quality proxy from all spectra data.
- Score: 23.520785716235398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of multi-spectral vehicle Re-identification (ReID) is significantly degraded when some important discriminative cues in visible, near infrared and thermal infrared spectra are lost. Existing methods generate or enhance missing details in low-quality spectra data using the high-quality one, generally called the primary spectrum, but how to justify the primary spectrum is a challenging problem. In addition, when the quality of the primary spectrum is low, the enhancement effect would be greatly degraded, thus limiting the performance of multi-spectral vehicle ReID. To address these problems, we propose the Collaborative Enhancement Network (CoEN), which generates a high-quality proxy from all spectra data and leverages it to supervise the selection of primary spectrum and enhance all spectra features in a collaborative manner, for robust multi-spectral vehicle ReID. First, to integrate the rich cues from all spectra data, we design the Proxy Generator (PG) to progressively aggregate multi-spectral features. Second, we design the Dynamic Quality Sort Module (DQSM), which sorts all spectra data by measuring their correlations with the proxy, to accurately select the primary spectra with the highest correlation. Finally, we design the Collaborative Enhancement Module (CEM) to effectively compensate for missing contents of all spectra by collaborating the primary spectra and the proxy, thereby mitigating the impact of low-quality primary spectra. Extensive experiments on three benchmark datasets are conducted to validate the efficacy of the proposed approach against other multi-spectral vehicle ReID methods. The codes will be released at https://github.com/yongqisun/CoEN.
Related papers
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.
variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.
We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Towards Ultimate NMR Resolution with Deep Learning [0.0]
In multidimensional NMR spectroscopy, practical resolution is defined as the ability to distinguish and accurately determine signal positions against a background of overlapping peaks, thermal noise, and spectral artifacts.<n>In the pursuit of ultimate resolution, we introduce Peak Probability presentations ($P3$)- a statistical spectral representation that assigns a probability to each spectral point, indicating the likelihood of a peak maximum occurring at that location.<n>The mapping between the spectrum and $P3$ is achieved using MR-Ai, a physics-inspired deep learning neural network architecture, designed to handle multidimensional NMR spectra.
arXiv Detail & Related papers (2025-02-28T07:20:25Z) - Cross-Spectral Attention for Unsupervised RGB-IR Face Verification and Person Re-identification [1.6768151308423365]
Cross-spectral biometrics, such as matching imagery of faces or persons from visible (RGB) and infrared (IR) bands, have rapidly advanced over the last decade.<n>We propose a novel unsupervised cross-spectral framework that combines (1) a new pseudo triplet loss with cross-spectral voting, (2) a new cross-spectral attention network leveraging multiple subspaces, and (3) structured sparsity to perform more discriminative cross-spectral clustering.
arXiv Detail & Related papers (2024-11-28T15:38:15Z) - Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - TOP-ReID: Multi-spectral Object Re-Identification with Token Permutation [64.65950381870742]
We propose a cyclic token permutation framework for multi-spectral object ReID, dubbled TOP-ReID.
We also propose a Token Permutation Module (TPM) for cyclic multi-spectral feature aggregation.
Our proposed framework can generate more discriminative multi-spectral features for robust object ReID.
arXiv Detail & Related papers (2023-12-15T08:54:15Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - Hyperspectral Images Classification and Dimensionality Reduction using
spectral interaction and SVM classifier [0.0]
The high dimensionality of the hyperspectral images (HSI) is one of the main challenges for the analysis of the collected data.
The existence of noisy, redundant and irrelevant bands increases the computational complexity.
We propose a novel filter approach based on the spectral interaction measure and the support vector machines for dimensionality reduction.
arXiv Detail & Related papers (2022-10-27T15:37:57Z) - There and Back Again: Self-supervised Multispectral Correspondence
Estimation [13.56924750612194]
We introduce a novel cycle-consistency metric that allows us to self-supervise. This, combined with our spectra-agnostic loss functions, allows us to train the same network across multiple spectra.
We demonstrate our approach on the challenging task of dense RGB-FIR correspondence estimation.
arXiv Detail & Related papers (2021-03-19T12:33:56Z) - Cross-Spectral Periocular Recognition with Conditional Adversarial
Networks [59.17685450892182]
We propose Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra.
We obtain a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.
arXiv Detail & Related papers (2020-08-26T15:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.