Modeling Annotator Disagreement with Demographic-Aware Experts and Synthetic Perspectives
- URL: http://arxiv.org/abs/2508.02853v1
- Date: Mon, 04 Aug 2025 19:27:17 GMT
- Title: Modeling Annotator Disagreement with Demographic-Aware Experts and Synthetic Perspectives
- Authors: Yinuo Xu, Veronica Derricks, Allison Earl, David Jurgens,
- Abstract summary: We present an approach to modeling annotator disagreement in subjective NLP tasks through both architectural and data-centric innovations.<n>Our modelworks based on annotator demographics, enabling it to better represent structured, group-level variation.<n>We propose and evaluate approaches for blending real and synthetic data using strategies tailored to dataset structure.
- Score: 10.753785813662654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an approach to modeling annotator disagreement in subjective NLP tasks through both architectural and data-centric innovations. Our model, DEM-MoE (Demographic-Aware Mixture of Experts), routes inputs to expert subnetworks based on annotator demographics, enabling it to better represent structured, group-level variation compared to prior models. DEM-MoE consistently performs competitively across demographic groups, and shows especially strong results on datasets with high annotator disagreement. To address sparse demographic coverage, we test whether LLM-generated synthetic annotations via zero-shot persona prompting can be used for data imputation. We show these synthetic judgments align moderately well with human annotations on our data and offer a scalable way to potentially enrich training data. We then propose and evaluate approaches for blending real and synthetic data using strategies tailored to dataset structure. We find that the optimal strategies depend on dataset structure. Together, these contributions improve the representation of diverse perspectives.
Related papers
- Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models [93.1043186636177]
We explore the hypothesis that people use a combination of distributed and symbolic representations to construct bespoke mental models tailored to novel situations.<n>We propose a computational implementation of this idea -- a Model Synthesis Architecture''<n>We evaluate our MSA as a model of human judgments on a novel reasoning dataset.
arXiv Detail & Related papers (2025-07-16T18:01:03Z) - Comparing Methods for Bias Mitigation in Graph Neural Networks [5.256237513030105]
This paper examines the critical role of Graph Neural Networks (GNNs) in data preparation for generative artificial intelligence (GenAI) systems.<n>We present a comparative analysis of three distinct methods for bias mitigation: data sparsification, feature modification, and synthetic data augmentation.
arXiv Detail & Related papers (2025-03-28T16:18:48Z) - Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches [35.431340001608476]
This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning.
It aims to tackle the challenges posed by small-sample data in fields such as drug discovery, target recognition, and malicious traffic detection.
Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning.
arXiv Detail & Related papers (2024-11-25T16:51:11Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
This paper presents a novel synthetic dataset designed to evaluate the proficiency of large language models in interpreting data visualizations.
Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios.
We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models.
arXiv Detail & Related papers (2024-09-04T11:19:17Z) - Numerical Literals in Link Prediction: A Critical Examination of Models and Datasets [2.5999037208435705]
Link Prediction models that incorporate numerical literals have shown minor improvements on existing benchmark datasets.
It is unclear whether a model is actually better in using numerical literals, or better capable of utilizing the graph structure.
We propose a methodology to evaluate LP models that incorporate numerical literals.
arXiv Detail & Related papers (2024-07-25T17:55:33Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Learning from Synthetic Data for Visual Grounding [55.21937116752679]
We show that SynGround can improve the localization capabilities of off-the-shelf vision-and-language models.<n>Data generated with SynGround improves the pointing game accuracy of a pretrained ALBEF and BLIP models by 4.81% and 17.11% absolute percentage points, respectively.
arXiv Detail & Related papers (2024-03-20T17:59:43Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - The Deep Latent Position Topic Model for Clustering and Representation
of Networks with Textual Edges [2.6334900941196087]
Deep-LPTM is a model-based clustering strategy based on a variational graph auto-encoder approach.
The emails of the Enron company are analysed and visualisations of the results are presented.
arXiv Detail & Related papers (2023-04-14T07:01:57Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.