BoostTransformer: Enhancing Transformer Models with Subgrid Selection and Importance Sampling
- URL: http://arxiv.org/abs/2508.02924v1
- Date: Mon, 04 Aug 2025 21:54:16 GMT
- Title: BoostTransformer: Enhancing Transformer Models with Subgrid Selection and Importance Sampling
- Authors: Biyi Fang, Jean Utke, Truong Vo, Diego Klabjan,
- Abstract summary: BoostTransformer augments transformers with boosting principles through subgrid token selection and importance-weighted sampling.<n>Our method incorporates a least square boosting objective directly into the transformer pipeline, enabling more efficient training and improved performance.
- Score: 11.246174442827282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer architectures dominate modern NLP but often demand heavy computational resources and intricate hyperparameter tuning. To mitigate these challenges, we propose a novel framework, BoostTransformer, that augments transformers with boosting principles through subgrid token selection and importance-weighted sampling. Our method incorporates a least square boosting objective directly into the transformer pipeline, enabling more efficient training and improved performance. Across multiple fine-grained text classification benchmarks, BoostTransformer demonstrates both faster convergence and higher accuracy, surpassing standard transformers while minimizing architectural search overhead.
Related papers
- Chain-of-Thought Enhanced Shallow Transformers for Wireless Symbol Detection [14.363929799618283]
We propose CHain Of thOught Symbol dEtection (CHOOSE), a CoT-enhanced shallow Transformer framework for wireless symbol detection.<n>By introducing autoregressive latent reasoning steps within the hidden space, CHOOSE significantly improves the reasoning capacity of shallow models.<n> Experimental results demonstrate that our approach outperforms conventional shallow Transformers and achieves performance comparable to that of deep Transformers.
arXiv Detail & Related papers (2025-06-26T08:41:45Z) - Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers [56.264673865476986]
This paper introduces Skip-Layer Attention (SLA) to enhance Transformer models.
SLA improves the model's ability to capture dependencies between high-level abstract features and low-level details.
Our implementation extends the Transformer's functionality by enabling queries in a given layer to interact with keys and values from both the current layer and one preceding layer.
arXiv Detail & Related papers (2024-06-17T07:24:38Z) - AlgoFormer: An Efficient Transformer Framework with Algorithmic Structures [80.28359222380733]
We design a novel transformer framework, dubbed AlgoFormer, to empower transformers with algorithmic capabilities.<n>In particular, inspired by the structure of human-designed learning algorithms, our transformer framework consists of a pre-transformer that is responsible for task preprocessing.<n>Some theoretical and empirical results are presented to show that the designed transformer has the potential to perform algorithm representation and learning.
arXiv Detail & Related papers (2024-02-21T07:07:54Z) - Enhanced Transformer Architecture for Natural Language Processing [2.6071653283020915]
Transformer is a state-of-the-art model in the field of natural language processing (NLP)
In this paper, a novel structure of Transformer is proposed. It is featured by full layer normalization, weighted residual connection, positional encoding exploiting reinforcement learning, and zero masked self-attention.
The proposed Transformer model, which is called Enhanced Transformer, is validated by the bilingual evaluation understudy (BLEU) score obtained with the Multi30k translation dataset.
arXiv Detail & Related papers (2023-10-17T01:59:07Z) - SPION: Layer-Wise Sparse Training of Transformer via Convolutional Flood
Filling [1.0128808054306186]
We propose a novel sparsification scheme for the Transformer that integrates convolution filters and the flood filling method.
Our sparsification approach reduces the computational complexity and memory footprint of the Transformer during training.
New SPION achieves up to 3.08X speedup over existing state-of-the-art sparse Transformer models.
arXiv Detail & Related papers (2023-09-22T02:14:46Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - ByteTransformer: A High-Performance Transformer Boosted for
Variable-Length Inputs [6.9136984255301]
We present ByteTransformer, a high-performance transformer boosted for variable-length inputs.
ByteTransformer surpasses the state-of-the-art Transformer frameworks, such as PyTorch JIT, XLA, Tencent TurboTransformer and NVIDIA FasterTransformer.
arXiv Detail & Related papers (2022-10-06T16:57:23Z) - Towards Lightweight Transformer via Group-wise Transformation for
Vision-and-Language Tasks [126.33843752332139]
We introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer.
We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets.
Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks.
arXiv Detail & Related papers (2022-04-16T11:30:26Z) - Sparse is Enough in Scaling Transformers [12.561317511514469]
Large Transformer models yield impressive results on many tasks, but are expensive to train, or even fine-tune, and so slow at decoding that their use and study becomes out of reach.
We propose Scaling Transformers, a family of next generation Transformer models that use sparse layers to scale efficiently and perform unbatched decoding much faster than the standard Transformer.
arXiv Detail & Related papers (2021-11-24T19:53:46Z) - Scalable Transformers for Neural Machine Translation [86.4530299266897]
Transformer has been widely adopted in Neural Machine Translation (NMT) because of its large capacity and parallel training of sequence generation.
We propose a novel scalable Transformers, which naturally contains sub-Transformers of different scales and have shared parameters.
A three-stage training scheme is proposed to tackle the difficulty of training the scalable Transformers.
arXiv Detail & Related papers (2021-06-04T04:04:10Z) - Finetuning Pretrained Transformers into RNNs [81.72974646901136]
Transformers have outperformed recurrent neural networks (RNNs) in natural language generation.
A linear-complexity recurrent variant has proven well suited for autoregressive generation.
This work aims to convert a pretrained transformer into its efficient recurrent counterpart.
arXiv Detail & Related papers (2021-03-24T10:50:43Z) - Incorporating Convolution Designs into Visual Transformers [24.562955955312187]
We propose a new textbfConvolution-enhanced image Transformer (CeiT) which combines the advantages of CNNs in extracting low-level features, strengthening locality, and the advantages of Transformers in establishing long-range dependencies.
Experimental results on ImageNet and seven downstream tasks show the effectiveness and generalization ability of CeiT compared with previous Transformers and state-of-the-art CNNs, without requiring a large amount of training data and extra CNN teachers.
arXiv Detail & Related papers (2021-03-22T13:16:12Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
arXiv Detail & Related papers (2020-05-20T17:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.