Injecting Measurement Information Yields a Fast and Noise-Robust Diffusion-Based Inverse Problem Solver
- URL: http://arxiv.org/abs/2508.02964v1
- Date: Tue, 05 Aug 2025 00:01:41 GMT
- Title: Injecting Measurement Information Yields a Fast and Noise-Robust Diffusion-Based Inverse Problem Solver
- Authors: Jonathan Patsenker, Henry Li, Myeongseob Ko, Ruoxi Jia, Yuval Kluger,
- Abstract summary: We propose to estimate the conditional posterior mean $mathbbE [mathbfx_t, mathbfy]$.<n>The resulting prediction can be integrated into any standard sampler, resulting in a fast and memory-efficient inverse solver.
- Score: 20.959606647379356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have been firmly established as principled zero-shot solvers for linear and nonlinear inverse problems, owing to their powerful image prior and iterative sampling algorithm. These approaches often rely on Tweedie's formula, which relates the diffusion variate $\mathbf{x}_t$ to the posterior mean $\mathbb{E} [\mathbf{x}_0 | \mathbf{x}_t]$, in order to guide the diffusion trajectory with an estimate of the final denoised sample $\mathbf{x}_0$. However, this does not consider information from the measurement $\mathbf{y}$, which must then be integrated downstream. In this work, we propose to estimate the conditional posterior mean $\mathbb{E} [\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y}]$, which can be formulated as the solution to a lightweight, single-parameter maximum likelihood estimation problem. The resulting prediction can be integrated into any standard sampler, resulting in a fast and memory-efficient inverse solver. Our optimizer is amenable to a noise-aware likelihood-based stopping criteria that is robust to measurement noise in $\mathbf{y}$. We demonstrate comparable or improved performance against a wide selection of contemporary inverse solvers across multiple datasets and tasks.
Related papers
- Spike-and-Slab Posterior Sampling in High Dimensions [11.458504242206862]
Posterior sampling with the spike-and-slab prior [MB88] is considered the theoretical gold standard method for Bayesian sparse linear regression.<n>We give the first provable algorithms for spike-and-slab posterior sampling that apply for any SNR, and use a measurement count sub in the problem dimension.<n>We extend our result to spike-and-slab posterior sampling with Laplace diffuse densities, achieving similar guarantees when $sigma = O(frac1k)$ is bounded.
arXiv Detail & Related papers (2025-03-04T17:16:07Z) - Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
We propose amortize the cost of sampling from a posterior distribution of the form $p(mathbfxmidmathbfy) propto p_theta(mathbfx)$.<n>For many models and constraints, the posterior in noise space is smoother than in data space, making it more suitable for amortized inference.
arXiv Detail & Related papers (2025-02-10T19:49:54Z) - Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
This paper aims to recover the intrinsic model parameters given the leverage scores gradient.
We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$.
arXiv Detail & Related papers (2024-08-21T01:39:42Z) - Diffusion Posterior Sampling is Computationally Intractable [9.483130965295324]
Posterior sampling is useful for tasks such as inpainting, super-resolution, and MRI reconstruction.
We show that posterior sampling is emphcomputationally intractable: under the most basic assumption in cryptography, that one-way functions exist.
We also show that the exponential-time rejection sampling is essentially optimal under the stronger plausible assumption that there are one-way functions that take exponential time to invert.
arXiv Detail & Related papers (2024-02-20T05:28:13Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Near Optimal Heteroscedastic Regression with Symbiotic Learning [29.16456701187538]
We consider the problem of heteroscedastic linear regression.
We can estimate $mathbfw*$ in squared norm up to an error of $tildeOleft(|mathbff*|2cdot left(frac1n + left(dnright)2right)$ and prove a matching lower bound.
arXiv Detail & Related papers (2023-06-25T16:32:00Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.