Tree-of-Reasoning: Towards Complex Medical Diagnosis via Multi-Agent Reasoning with Evidence Tree
- URL: http://arxiv.org/abs/2508.03038v1
- Date: Tue, 05 Aug 2025 03:31:28 GMT
- Title: Tree-of-Reasoning: Towards Complex Medical Diagnosis via Multi-Agent Reasoning with Evidence Tree
- Authors: Qi Peng, Jialin Cui, Jiayuan Xie, Yi Cai, Qing Li,
- Abstract summary: We propose Tree-of-Reasoning (ToR), a novel multi-agent framework designed to handle complex scenarios.<n>Specifically, ToR introduces a tree structure that can clearly record the reasoning path of large language models (LLMs) and the corresponding clinical evidence.<n>At the same time, we propose a cross-validation mechanism to ensure the consistency of multi-agent decision-making.
- Score: 14.013981070330153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown great potential in the medical domain. However, existing models still fall short when faced with complex medical diagnosis task in the real world. This is mainly because they lack sufficient reasoning depth, which leads to information loss or logical jumps when processing a large amount of specialized medical data, leading to diagnostic errors. To address these challenges, we propose Tree-of-Reasoning (ToR), a novel multi-agent framework designed to handle complex scenarios. Specifically, ToR introduces a tree structure that can clearly record the reasoning path of LLMs and the corresponding clinical evidence. At the same time, we propose a cross-validation mechanism to ensure the consistency of multi-agent decision-making, thereby improving the clinical reasoning ability of multi-agents in complex medical scenarios. Experimental results on real-world medical data show that our framework can achieve better performance than existing baseline methods.
Related papers
- A Multi-Agent System for Complex Reasoning in Radiology Visual Question Answering [3.3809462259925938]
Radiology visual question answering (RVQA) provides precise answers to questions about chest X-ray images.<n>Recent methods based on multimodal large language models (MLLMs) and retrieval-augmented generation (RAG) have shown promising progress in RVQA.<n>We introduce a multi-agent system (MAS) designed to support complex reasoning in RVQA.
arXiv Detail & Related papers (2025-08-04T19:09:52Z) - MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models [9.411749481805355]
Integrating glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages.<n>Applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge.<n>We propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents.
arXiv Detail & Related papers (2025-06-09T03:51:18Z) - A Multimodal Multi-Agent Framework for Radiology Report Generation [2.1477122604204433]
Radiology report generation (RRG) aims to automatically produce diagnostic reports from medical images.<n>We propose a multimodal multi-agent framework for RRG that aligns with the stepwise clinical reasoning workflow.
arXiv Detail & Related papers (2025-05-14T20:28:04Z) - MDTeamGPT: A Self-Evolving LLM-based Multi-Agent Framework for Multi-Disciplinary Team Medical Consultation [20.622990699649694]
Multi-role collaboration in MDT consultations often results in excessively long dialogue histories.<n>We propose a multi-agent MDT medical consultation framework based on Large Language Models (LLMs) to address these issues.<n>Our framework uses consensus aggregation and a residual discussion structure for multi-round consultations.<n>It also employs a Correct Answer Knowledge Base (CorrectKB) and a Chain-of-Thought Knowledge Base (ChainKB) to accumulate consultation experience.
arXiv Detail & Related papers (2025-03-18T03:07:34Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support [22.40301339126307]
We introduce Citrus, a medical language model that bridges the gap between clinical expertise and AI reasoning.<n>The model is trained on a large corpus of simulated expert disease reasoning data.<n>We release the last-stage training data, including a custom-built medical diagnostic dialogue dataset.
arXiv Detail & Related papers (2025-02-25T15:05:12Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.