A Novel Multimodal Framework for Early Detection of Alzheimers Disease Using Deep Learning
- URL: http://arxiv.org/abs/2508.03046v1
- Date: Tue, 05 Aug 2025 03:46:59 GMT
- Title: A Novel Multimodal Framework for Early Detection of Alzheimers Disease Using Deep Learning
- Authors: Tatwadarshi P Nagarhalli, Sanket Patil, Vishal Pande, Uday Aswalekar, Prafulla Patil,
- Abstract summary: Alzheimers Disease (AD) is a progressive neurodegenerative disorder that poses significant challenges in its early diagnosis.<n>Traditional diagnostic methods fall short of capturing the multifaceted nature of the disease.<n>We propose a novel framework for the early detection of AD that integrates data from three primary sources: MRI imaging, cognitive assessments, and biomarkers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimers Disease (AD) is a progressive neurodegenerative disorder that poses significant challenges in its early diagnosis, often leading to delayed treatment and poorer outcomes for patients. Traditional diagnostic methods, typically reliant on single data modalities, fall short of capturing the multifaceted nature of the disease. In this paper, we propose a novel multimodal framework for the early detection of AD that integrates data from three primary sources: MRI imaging, cognitive assessments, and biomarkers. This framework employs Convolutional Neural Networks (CNN) for analyzing MRI images and Long Short-Term Memory (LSTM) networks for processing cognitive and biomarker data. The system enhances diagnostic accuracy and reliability by aggregating results from these distinct modalities using advanced techniques like weighted averaging, even in incomplete data. The multimodal approach not only improves the robustness of the detection process but also enables the identification of AD at its earliest stages, offering a significant advantage over conventional methods. The integration of biomarkers and cognitive tests is particularly crucial, as these can detect Alzheimer's long before the onset of clinical symptoms, thereby facilitating earlier intervention and potentially altering the course of the disease. This research demonstrates that the proposed framework has the potential to revolutionize the early detection of AD, paving the way for more timely and effective treatments
Related papers
- Cross-modal Causal Intervention for Alzheimer's Disease Prediction [12.485088483891843]
We propose a visual-language causal intervention framework named Alzheimer's Disease Prediction with Cross-modal Causal Intervention.<n>Our framework implicitly eliminates confounders through causal intervention.<n> Experimental results demonstrate the outstanding performance of our method in distinguishing CN/MCI/AD cases.
arXiv Detail & Related papers (2025-07-18T14:21:24Z) - Multi-omic Prognosis of Alzheimer's Disease with Asymmetric Cross-Modal Cross-Attention Network [0.5325390073522079]
This paper proposes a novel deep learning algorithm framework to assist medical professionals in Alzheimer's Disease diagnosis.<n>By fusing medical multi-view information such as brain fluorodeoxyglucose positron emission tomography (PET), magnetic resonance imaging (MRI), genetic data, and clinical data, it can accurately detect the presence of AD.<n>The algorithm model achieves an accuracy of 94.88% on the test set.
arXiv Detail & Related papers (2025-07-09T07:12:38Z) - MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Assessing the Efficacy of Classical and Deep Neuroimaging Biomarkers in Early Alzheimer's Disease Diagnosis [2.2667044928324747]
Alzheimer's disease (AD) is the leading cause of dementia, and its early detection is crucial for effective intervention.
This study aims to detect significant indicators of early AD by extracting and integrating various imaging biomarkers.
arXiv Detail & Related papers (2024-10-31T15:02:16Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Early Detection of Alzheimer's Disease using Bottleneck Transformers [1.14219428942199]
We introduce a novel approach of using an ensemble of the self-attention-based Bottleneck Transformers with a sharpness aware minimizer for early detection of Alzheimer's Disease.
The proposed approach has been tested on the widely accepted ADNI dataset and evaluated using accuracy, precision, recall, F1 score, and ROC-AUC score as the performance metrics.
arXiv Detail & Related papers (2023-05-01T16:17:52Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.