論文の概要: Attack the Messages, Not the Agents: A Multi-round Adaptive Stealthy Tampering Framework for LLM-MAS
- arxiv url: http://arxiv.org/abs/2508.03125v1
- Date: Tue, 05 Aug 2025 06:14:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.810324
- Title: Attack the Messages, Not the Agents: A Multi-round Adaptive Stealthy Tampering Framework for LLM-MAS
- Title(参考訳): エージェントではなくメッセージを攻撃する: LLM-MASのためのマルチラウンド適応型ステルス処理フレームワーク
- Authors: Bingyu Yan, Ziyi Zhou, Xiaoming Zhang, Chaozhuo Li, Ruilin Zeng, Yirui Qi, Tianbo Wang, Litian Zhang,
- Abstract要約: 言語モデルに基づく大規模マルチエージェントシステム(LLM-MAS)は,エージェント間通信によって複雑な動的タスクを効果的に実現する。
LLM-MASを標的とする既存の攻撃方法は、エージェント内部を妥協するか、直接的および過度な説得に依存している。
システム内の通信脆弱性を利用したマルチラウンド適応型ステルスタイピングフレームワークであるMASTを提案する。
- 参考スコア(独自算出の注目度): 12.649568006596956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model-based multi-agent systems (LLM-MAS) effectively accomplish complex and dynamic tasks through inter-agent communication, but this reliance introduces substantial safety vulnerabilities. Existing attack methods targeting LLM-MAS either compromise agent internals or rely on direct and overt persuasion, which limit their effectiveness, adaptability, and stealthiness. In this paper, we propose MAST, a Multi-round Adaptive Stealthy Tampering framework designed to exploit communication vulnerabilities within the system. MAST integrates Monte Carlo Tree Search with Direct Preference Optimization to train an attack policy model that adaptively generates effective multi-round tampering strategies. Furthermore, to preserve stealthiness, we impose dual semantic and embedding similarity constraints during the tampering process. Comprehensive experiments across diverse tasks, communication architectures, and LLMs demonstrate that MAST consistently achieves high attack success rates while significantly enhancing stealthiness compared to baselines. These findings highlight the effectiveness, stealthiness, and adaptability of MAST, underscoring the need for robust communication safeguards in LLM-MAS.
- Abstract(参考訳): 言語モデルに基づく大規模マルチエージェントシステム(LLM-MAS)は,エージェント間通信による複雑な動的タスクを効果的に実現するが,この依存は重大な安全性上の脆弱性をもたらす。
LLM-MASを標的とする既存の攻撃方法は、エージェント内部を妥協するか、直接的および過度な説得に依存し、その効果、適応性、ステルス性を制限する。
本稿では,マルチラウンド適応型ステルスタイピングフレームワークであるMASTを提案する。
MASTはMonte Carlo Tree SearchとDirect Preference Optimizationを統合して、効果的なマルチラウンドタンパー戦略を適応的に生成するアタックポリシーモデルをトレーニングする。
さらに,ステルス性を維持するため,改ざんプロセス中に二元的意味論と類似性制約の埋め込みを課す。
多様なタスク、通信アーキテクチャ、LLMにわたる総合的な実験により、MASTはベースラインに比べてステルス性を著しく向上しつつ、高い攻撃成功率を一貫して達成していることが示された。
これらの知見は, LLM-MASにおける堅牢な通信保護の必要性を浮き彫りにして, MASTの有効性, ステルス性, 適応性を強調した。
関連論文リスト
- LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
この研究は、エネルギー制約下での不均一なUAVネットワーク(HetUAVN)における機密率の最大化に焦点を当てている。
本稿では,Large Language Model (LLM) を用いたマルチエージェント学習手法を提案する。
その結果,本手法は機密性やエネルギー効率において,既存のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-07-23T04:22:57Z) - RALLY: Role-Adaptive LLM-Driven Yoked Navigation for Agentic UAV Swarms [15.891423894740045]
役割適応型LCM駆動ヨードナビゲーションアルゴリズムをアラリカルに開発する。
RALLYは構造化自然言語を用いて効率的な意味コミュニケーションと協調推論を行う。
実験の結果, タスクカバレッジ, 収束速度, 一般化の点で, 従来手法よりも有意な性能を示した。
論文 参考訳(メタデータ) (2025-07-02T05:44:17Z) - Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
マルチモーダル・ユニバーサル・ジェイルブレイク・アタック・フレームワークを提案する。
LLaVA,Yi-VL,MiniGPT4,MiniGPT-v2,InstructBLIPなどのMLLMの望ましくないコンテキスト生成を評価する。
本研究は,MLLMにおける堅牢な安全対策の必要性を浮き彫りにするものである。
論文 参考訳(メタデータ) (2025-06-02T04:33:56Z) - MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision [76.42361936804313]
自動MAS設計のための自己進化型推論時間フレームワークMAS-ZEROを紹介する。
MAS-ZEROはメタレベルの設計を採用し、各問題インスタンスに適したMAS構成を反復的に生成し、評価し、洗練する。
論文 参考訳(メタデータ) (2025-05-21T00:56:09Z) - A Weighted Byzantine Fault Tolerance Consensus Driven Trusted Multiple Large Language Models Network [53.37983409425452]
大規模言語モデル(LLM)は幅広いアプリケーションで大きな成功を収めています。
近年,MultiLLMネットワーク(MultiLLMN)などの協調フレームワークが導入されている。
重み付きビザンチンフォールトトレランス(WBFT)ブロックチェーンコンセンサス機構によって駆動される新しいTrusted MultiLLMNフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-08T10:04:41Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
複数の大規模言語モデル(LLM)を信頼性のあるマルチLLMネットワーク(MultiLLMN)に接続するブロックチェーン対応協調フレームワークを提案する。
このアーキテクチャは、複雑なネットワーク最適化問題に対する最も信頼性が高く高品質な応答の協調評価と選択を可能にする。
論文 参考訳(メタデータ) (2025-05-06T05:32:46Z) - Red-Teaming LLM Multi-Agent Systems via Communication Attacks [10.872328358364776]
大規模言語モデルに基づくマルチエージェントシステム(LLM-MAS)は、メッセージベースのコミュニケーションを通じて高度なエージェント協調を可能にすることで、複雑な問題解決能力に革命をもたらした。
エージェント・イン・ザ・ミドル(AiTM, Agent-in-the-Middle)は、エージェント間メッセージのインターセプトと操作によってLLM-MASの基本的な通信機構を利用する新たな攻撃法である。
論文 参考訳(メタデータ) (2025-02-20T18:55:39Z) - G-Safeguard: A Topology-Guided Security Lens and Treatment on LLM-based Multi-agent Systems [10.450573905691677]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)は,様々な複雑なタスクにおいて顕著な機能を示した。
これらのシステムがますます重要なアプリケーションに統合されるにつれて、敵の攻撃、誤情報伝播、意図しない行動に対する脆弱性が懸念されている。
我々は、トポロジー誘導型セキュリティレンズであるG-Safeguardを導入し、ロバストMASに対する治療を行った。
論文 参考訳(メタデータ) (2025-02-16T13:48:41Z) - Position: Towards a Responsible LLM-empowered Multi-Agent Systems [22.905804138387854]
Agent AIとLarge Language Model-powered Multi-Agent Systems (LLM-MAS)の台頭は、責任と信頼性のあるシステム操作の必要性を浮き彫りにした。
LLMエージェントは固有の予測不能を示し、出力の不確実性は複雑になり、システムの安定性を脅かす。
これらのリスクに対処するためには、アクティブな動的モデレーションを備えた人間中心の設計アプローチが不可欠である。
論文 参考訳(メタデータ) (2025-02-03T16:04:30Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
大規模言語モデル(LLM)を駆使したAIエージェントは、シームレスで自然な、コンテキスト対応のコミュニケーションを可能にすることによって、人間とコンピュータのインタラクションを変革した。
本稿では,AIエージェント内のLLMコアを標的とした敵攻撃という,重大な脆弱性について検討する。
論文 参考訳(メタデータ) (2024-12-05T18:38:30Z) - R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge [78.26352952957909]
マルチタスク大言語モデル(MTLLM)は、ユーザが複数のタスクを効率的に処理するための特殊なモデルを要求する無線エッジにおける多くのアプリケーションにとって重要である。
タスクベクトルによるモデル融合の概念は、MDLLMを生成するための微調整パラメータを組み合わせるための効率的なアプローチとして登場した。
本稿では,最悪の逆攻撃を前提として,エッジユーザがタスクベクトルを介して協調的にMTLMを作成できる問題について検討する。
論文 参考訳(メタデータ) (2024-11-27T10:57:06Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
現在の緩和戦略は効果はあるものの、敵の攻撃下では弾力性がない。
本稿では,大規模言語モデルのための弾力性ガードレール(RigorLLM)について紹介する。
論文 参考訳(メタデータ) (2024-03-19T07:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。