Dual-disentangle Framework for Diversified Sequential Recommendation
- URL: http://arxiv.org/abs/2508.03172v1
- Date: Tue, 05 Aug 2025 07:25:56 GMT
- Title: Dual-disentangle Framework for Diversified Sequential Recommendation
- Authors: Haoran Zhang, Jingtong Liu, Jiangzhou Deng, Junpeng Guo,
- Abstract summary: We propose a model-agnostic Dual-disangling framework for Diversified Sequential Recommendation (DDSRec)<n>The framework refines user interest and intention modeling by adopting disentangling perspectives in interaction modeling and representation.
- Score: 16.688375054719767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation predicts user preferences over time and has achieved remarkable success. However, the growing length of user interaction sequences and the complex entanglement of evolving user interests and intentions introduce significant challenges to diversity. To address these, we propose a model-agnostic Dual-disentangle framework for Diversified Sequential Recommendation (DDSRec). The framework refines user interest and intention modeling by adopting disentangling perspectives in interaction modeling and representation learning, thereby balancing accuracy and diversity in sequential recommendations. Extensive experiments on multiple public datasets demonstrate the effectiveness and superiority of DDSRec in terms of accuracy and diversity for sequential recommendations.
Related papers
- Bayesian-Guided Diversity in Sequential Sampling for Recommender Systems [1.675857332621569]
We propose a novel framework that leverages a multi-objective, contextual sequential sampling strategy.<n>Item selection is guided by Bayesian updates that dynamically adjust scores to optimize diversity.<n> Experiments on a real-world dataset show that our approach significantly improves diversity without sacrificing relevance.
arXiv Detail & Related papers (2025-06-22T19:36:02Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
We present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation.<n>Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity.<n>Our framework exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.
arXiv Detail & Related papers (2025-05-22T16:22:54Z) - Joint Modeling in Recommendations: A Survey [46.000357352884926]
Joint modeling approaches are central to overcoming limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process.<n>We define the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling.<n>We highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
arXiv Detail & Related papers (2025-02-28T16:14:00Z) - Semantic Codebook Learning for Dynamic Recommendation Models [55.98259490159084]
Dynamic sequential recommendation (DSR) can generate model parameters based on user behavior to improve personalization of sequential recommendation.
It faces the challenges of large parameter search space and sparse and noisy user-item interactions, which reduces the applicability of the generated model parameters.
The Semantic Codebook Learning for Dynamic Recommendation Models (SOLID) framework presents a significant advancement in DSR by effectively tackling these challenges.
arXiv Detail & Related papers (2024-07-31T19:25:25Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
We propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL)
In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions.
We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs.
arXiv Detail & Related papers (2024-04-28T15:13:36Z) - BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
We propose an innovative framework, BivRec, that jointly trains the recommendation tasks in both ID and multimodal views.
BivRec achieves state-of-the-art performance on five datasets and showcases various practical advantages.
arXiv Detail & Related papers (2024-02-27T09:10:41Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity [59.24517649169952]
We argue that the representation degeneration issue is the root cause of insufficient recommendation diversity in existing SR methods.
We propose a novel Singular sPectrum sMoothing regularization for Recommendation (SPMRec), which acts as a controllable surrogate to alleviate the degeneration.
arXiv Detail & Related papers (2023-06-21T02:42:37Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
This paper proposes a deep reinforcement learning based recommendation system by utilizing Actor-Critic architecture.
The proposed model is able to generate a diverse while relevance recommendation list based on the user's preferences.
arXiv Detail & Related papers (2021-10-28T13:11:29Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.