Duplex-GS: Proxy-Guided Weighted Blending for Real-Time Order-Independent Gaussian Splatting
- URL: http://arxiv.org/abs/2508.03180v1
- Date: Tue, 05 Aug 2025 07:44:30 GMT
- Title: Duplex-GS: Proxy-Guided Weighted Blending for Real-Time Order-Independent Gaussian Splatting
- Authors: Weihang Liu, Yuke Li, Yuxuan Li, Jingyi Yu, Xin Lou,
- Abstract summary: We propose a dual-hierarchy framework that integrates proxy Gaussian representations with order-independent rendering techniques.<n>By seamlessly combining our framework with Order-Independent Transparency (OIT), we develop a physically inspired weighted sum rendering technique that simultaneously eliminates "popping" and "transparency" artifacts.<n>Our results validate the advantages of the OIT rendering paradigm in Gaussian Splatting, achieving high-quality rendering with an impressive 1.5 to 4 speedup over existing OIT based Gaussian Splatting approaches.
- Score: 37.17972426764452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated remarkable rendering fidelity and efficiency. However, these methods still rely on computationally expensive sequential alpha-blending operations, resulting in significant overhead, particularly on resource-constrained platforms. In this paper, we propose Duplex-GS, a dual-hierarchy framework that integrates proxy Gaussian representations with order-independent rendering techniques to achieve photorealistic results while sustaining real-time performance. To mitigate the overhead caused by view-adaptive radix sort, we introduce cell proxies for local Gaussians management and propose cell search rasterization for further acceleration. By seamlessly combining our framework with Order-Independent Transparency (OIT), we develop a physically inspired weighted sum rendering technique that simultaneously eliminates "popping" and "transparency" artifacts, yielding substantial improvements in both accuracy and efficiency. Extensive experiments on a variety of real-world datasets demonstrate the robustness of our method across diverse scenarios, including multi-scale training views and large-scale environments. Our results validate the advantages of the OIT rendering paradigm in Gaussian Splatting, achieving high-quality rendering with an impressive 1.5 to 4 speedup over existing OIT based Gaussian Splatting approaches and 52.2% to 86.9% reduction of the radix sort overhead without quality degradation.
Related papers
- UGOD: Uncertainty-Guided Differentiable Opacity and Soft Dropout for Enhanced Sparse-View 3DGS [8.78995910690481]
3D Gaussian Splatting (3DGS) has become a competitive approach for novel view synthesis (NVS)<n>We investigate how adaptive weighting of Gaussians affects rendering quality, which is characterised by learned uncertainties proposed.<n>Our method achieves 3.27% PSNR improvements on the MipNeRF 360 dataset.
arXiv Detail & Related papers (2025-08-07T01:42:22Z) - Exploring Diffusion with Test-Time Training on Efficient Image Restoration [1.3830502387127932]
DiffRWKVIR is a novel framework unifying Test-Time Training (TTT) with efficient diffusion.<n>Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
arXiv Detail & Related papers (2025-06-17T14:01:59Z) - Metropolis-Hastings Sampling for 3D Gaussian Reconstruction [24.110069582862465]
We propose an adaptive sampling framework for 3D Gaussian Splatting (3DGS)<n>Our framework overcomes limitations by reformulating densification and pruning as a probabilistic sampling process.<n>Our approach enhances computational efficiency while matching or modestly surpassing the view-synthesis quality of state-of-the-art models.
arXiv Detail & Related papers (2025-06-15T19:12:37Z) - RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS [79.15416002879239]
3D Gaussian Splatting has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling.<n>Existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images.<n>We propose RobustSplat, a robust solution based on two critical designs.
arXiv Detail & Related papers (2025-06-03T11:13:48Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required.<n>Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency.<n>We propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality.
arXiv Detail & Related papers (2025-03-21T18:55:14Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
We introduce MonoGSDF, a novel method that couples primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction.<n>To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization.<n>Experiments on real-world datasets outperforms prior methods while maintaining efficiency.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency [6.119688280076556]
3D Gaussians (3DGS) have proven a versatile rendering primitive, both for inverse rendering and real-time exploration of scenes.<n>Recent work started mitigating artifacts that break multi-view coherence, including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats.<n>In our work, we aim at achieving maximum coherence, by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid transparency, on a per-pixel level, in order to retain real-time frame rates.
arXiv Detail & Related papers (2024-10-10T17:14:16Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
We present a novel hierarchicalization approach that culls splats with minimal processing overhead.
Our approach is only 4% slower on average than the original Gaussian Splatting.
rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting.
arXiv Detail & Related papers (2024-02-01T11:46:44Z) - HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian
Splatting [48.59338619051709]
HiFi4G is an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage.
It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame.
arXiv Detail & Related papers (2023-12-06T12:36:53Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.