Architectural Insights into Knowledge Distillation for Object Detection: A Comprehensive Review
- URL: http://arxiv.org/abs/2508.03317v1
- Date: Tue, 05 Aug 2025 10:53:46 GMT
- Title: Architectural Insights into Knowledge Distillation for Object Detection: A Comprehensive Review
- Authors: Mahdi Golizadeh, Nassibeh Golizadeh, Mohammad Ali Keyvanrad, Hossein Shirazi,
- Abstract summary: This review introduces a novel architecture-centric taxonomy for KD methods, distinguishing between CNN-based detectors and Transformer-based detectors.<n>The proposed taxonomy and analysis aim to clarify the evolving landscape of KD in object detection, highlight current challenges, and guide future research toward efficient and scalable detection systems.
- Score: 1.374949083138427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection has achieved remarkable accuracy through deep learning, yet these improvements often come with increased computational cost, limiting deployment on resource-constrained devices. Knowledge Distillation (KD) provides an effective solution by enabling compact student models to learn from larger teacher models. However, adapting KD to object detection poses unique challenges due to its dual objectives-classification and localization-as well as foreground-background imbalance and multi-scale feature representation. This review introduces a novel architecture-centric taxonomy for KD methods, distinguishing between CNN-based detectors (covering backbone-level, neck-level, head-level, and RPN/RoI-level distillation) and Transformer-based detectors (including query-level, feature-level, and logit-level distillation). We further evaluate representative methods using the MS COCO and PASCAL VOC datasets with mAP@0.5 as performance metric, providing a comparative analysis of their effectiveness. The proposed taxonomy and analysis aim to clarify the evolving landscape of KD in object detection, highlight current challenges, and guide future research toward efficient and scalable detection systems.
Related papers
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Efficient Object Detection in Optical Remote Sensing Imagery via
Attention-based Feature Distillation [29.821082433621868]
We propose Attention-based Feature Distillation (AFD) for object detection.
We introduce a multi-instance attention mechanism that effectively distinguishes between background and foreground elements.
AFD attains the performance of other state-of-the-art models while being efficient.
arXiv Detail & Related papers (2023-10-28T11:15:37Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Gradient-Guided Knowledge Distillation for Object Detectors [3.236217153362305]
We propose a novel approach for knowledge distillation in object detection, named Gradient-guided Knowledge Distillation (GKD)
Our GKD uses gradient information to identify and assign more weights to features that significantly impact the detection loss, allowing the student to learn the most relevant features from the teacher.
Experiments on the KITTI and COCO-Traffic datasets demonstrate our method's efficacy in knowledge distillation for object detection.
arXiv Detail & Related papers (2023-03-07T21:09:09Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
arXiv Detail & Related papers (2022-06-20T14:24:16Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.