論文の概要: A neural network machine-learning approach for characterising hydrogen trapping parameters from TDS experiments
- arxiv url: http://arxiv.org/abs/2508.03371v1
- Date: Tue, 05 Aug 2025 12:21:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.953108
- Title: A neural network machine-learning approach for characterising hydrogen trapping parameters from TDS experiments
- Title(参考訳): TDS実験による水素トラップパラメータの特徴付けのためのニューラルネットワーク機械学習手法
- Authors: N. Marrani, T. Hageman, E. Martínez-Pañeda,
- Abstract要約: この研究は、TDSスペクトルからパラメータを識別するための機械学習に基づくスキームを導入する。
マルチニューラルネットワーク(NN)モデルを開発し,トラップパラメータを予測するために合成データのみを訓練する。
異なる組成のマルテンサイト系3鋼に印加した場合, 強い予測性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The hydrogen trapping behaviour of metallic alloys is generally characterised using Thermal Desorption Spectroscopy (TDS). However, as an indirect method, extracting key parameters (trap binding energies and densities) remains a significant challenge. To address these limitations, this work introduces a machine learning-based scheme for parameter identification from TDS spectra. A multi-Neural Network (NN) model is developed and trained exclusively on synthetic data to predict trapping parameters directly from experimental data. The model comprises two multi-layer, fully connected, feed-forward NNs trained with backpropagation. The first network (classification model) predicts the number of distinct trap types. The second network (regression model) then predicts the corresponding trap densities and binding energies. The NN architectures, hyperparameters, and data pre-processing were optimised to minimise the amount of training data. The proposed model demonstrated strong predictive capabilities when applied to three tempered martensitic steels of different compositions. The code developed is freely provided.
- Abstract(参考訳): 金属合金の水素トラップ挙動は、一般的に熱脱離分光法(TDS)を用いて特徴づけられる。
しかし、間接的手法として、鍵パラメータ(トラップ結合エネルギーと密度)を抽出することは依然として重要な課題である。
これらの制限に対処するため、本研究では、TDSスペクトルからのパラメータ識別のための機械学習ベースのスキームを導入する。
マルチニューラルネットワーク(NN)モデルは,実験データから直接トラップパラメータを予測するために,合成データのみに基づいて開発・訓練されている。
このモデルは、バックプロパゲーションで訓練された2つの多層、完全に接続されたフィードフォワードNNからなる。
最初のネットワーク(分類モデル)は、異なるトラップタイプの数を予測する。
次に、第2のネットワーク(回帰モデル)が対応するトラップ密度と結合エネルギーを予測する。
NNアーキテクチャ、ハイパーパラメータ、データ前処理は、トレーニングデータの量を最小限にするために最適化された。
異なる組成のマルテンサイト系3鋼に印加した場合, 強い予測性能を示した。
開発されたコードは自由に提供される。
関連論文リスト
- A Quantum Neural Network Transfer-Learning Model for Forecasting Problems with Continuous and Discrete Variables [0.0]
本研究では、タスク予測のための伝達学習手法として、単純で効果的な連続変数および離散変数量子ニューラルネットワーク(QNN)モデルを提案する。
CV-QNNは2つの量子ビットを持つ単一の量子層を備え、絡み合いを確立し、最小限の量子ゲートを使用する。
このモデルの凍結パラメータは、エネルギー消費、交通の流れ、気象条件、暗号通貨の価格予測など、様々な予測タスクにうまく適用されている。
論文 参考訳(メタデータ) (2025-03-04T22:38:51Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
本研究では、最近の機械学習の進歩を活用して、物理に基づくデータ分析プラットフォームを構築する。
直接反転と物理インフォームドニューラルネットワーク(PINN)の2つの論理について検討した。
論文 参考訳(メタデータ) (2023-01-06T05:01:05Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
本稿では,可変忠実度の雑音データを用いて訓練できるベイズ型ニューラルネットワーク(BNN)を提案する。
関数近似の学習や、偏微分方程式(PDE)に基づく逆問題の解法に応用する。
論文 参考訳(メタデータ) (2020-12-19T02:03:53Z) - Transfer Learning with Convolutional Networks for Atmospheric Parameter
Retrieval [14.131127382785973]
MetOp衛星シリーズに搭載された赤外線音波干渉計(IASI)は、数値気象予測(NWP)に重要な測定値を提供する
IASIが提供する生データから正確な大気パラメータを取得することは大きな課題であるが、NWPモデルでデータを使用するには必要である。
本研究では,iasiデータから抽出した特徴を,低い高度で異なる物理変数を予測するように設計された別の統計手法への入力として使用できることを示す。
論文 参考訳(メタデータ) (2020-12-09T09:28:42Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - A Hybrid Objective Function for Robustness of Artificial Neural Networks
-- Estimation of Parameters in a Mechanical System [0.0]
本稿では,加速度プロファイルに基づく機械車両モデルのパラメータ推定の課題について考察する。
未知のパラメータが異なる車両モデル群に対するパラメータを予測できる畳み込みニューラルネットワークアーキテクチャを導入する。
論文 参考訳(メタデータ) (2020-04-16T15:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。