Model Accuracy and Data Heterogeneity Shape Uncertainty Quantification in Machine Learning Interatomic Potentials
- URL: http://arxiv.org/abs/2508.03405v1
- Date: Tue, 05 Aug 2025 12:52:49 GMT
- Title: Model Accuracy and Data Heterogeneity Shape Uncertainty Quantification in Machine Learning Interatomic Potentials
- Authors: Fei Shuang, Zixiong Wei, Kai Liu, Wei Gao, Poulumi Dey,
- Abstract summary: Machine learning interatomic potentials (MLIPs) enable accurate atomistic modelling, but reliable uncertainty quantification (UQ) remains elusive.<n>In this study, we investigate two UQ strategies, ensemble learning and D-optimality, within the atomic cluster expansion framework.
- Score: 5.955636672018519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning interatomic potentials (MLIPs) enable accurate atomistic modelling, but reliable uncertainty quantification (UQ) remains elusive. In this study, we investigate two UQ strategies, ensemble learning and D-optimality, within the atomic cluster expansion framework. It is revealed that higher model accuracy strengthens the correlation between predicted uncertainties and actual errors and improves novelty detection, with D-optimality yielding more conservative estimates. Both methods deliver well calibrated uncertainties on homogeneous training sets, yet they underpredict errors and exhibit reduced novelty sensitivity on heterogeneous datasets. To address this limitation, we introduce clustering-enhanced local D-optimality, which partitions configuration space into clusters during training and applies D-optimality within each cluster. This approach substantially improves the detection of novel atomic environments in heterogeneous datasets. Our findings clarify the roles of model fidelity and data heterogeneity in UQ performance and provide a practical route to robust active learning and adaptive sampling strategies for MLIP development.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Robust Molecular Property Prediction via Densifying Scarce Labeled Data [51.55434084913129]
In drug discovery, compounds most critical for advancing research often lie beyond the training set.<n>We propose a novel meta-learning-based approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data.<n>We demonstrate significant performance gains on challenging real-world datasets.
arXiv Detail & Related papers (2025-06-13T15:27:40Z) - Rao-Blackwell Gradient Estimators for Equivariant Denoising Diffusion [41.50816120270017]
In domains such as molecular and protein generation, physical systems exhibit inherent symmetries that are critical to model.<n>We present a framework that reduces training variance and provides a provably lower-variance gradient estimator.<n>We also present a practical implementation of this estimator incorporating the loss and sampling procedure through a method we call Orbit Diffusion.
arXiv Detail & Related papers (2025-02-14T03:26:57Z) - SIDDA: SInkhorn Dynamic Domain Adaptation for Image Classification with Equivariant Neural Networks [37.69303106863453]
SIDDA is an out-of-the-box DA training algorithm built upon the Sinkhorn divergence.<n>We find that SIDDA enhances the generalization capabilities of NNs.<n>We also study the efficacy of SIDDA on ENNs with respect to the varying group orders of the dihedral group $D_N$.
arXiv Detail & Related papers (2025-01-23T19:29:34Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
computational models that predict drug-target interactions are valuable tools to accelerate the development of new therapeutic agents.
However, such models can be poorly calibrated, which results in unreliable uncertainty estimates.
We show that combining post hoc calibration method with well-performing uncertainty quantification approaches can boost model accuracy and calibration.
arXiv Detail & Related papers (2024-07-19T10:29:00Z) - Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration [0.6906005491572401]
We show that Information Bottleneck-based IRM achieves consistent calibration across different environments.
Our empirical evidence indicates that models exhibiting consistent calibration across environments are also well-calibrated.
arXiv Detail & Related papers (2024-01-31T02:08:43Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Ensemble models outperform single model uncertainties and predictions
for operator-learning of hypersonic flows [43.148818844265236]
Training scientific machine learning (SciML) models on limited high-fidelity data offers one approach to rapidly predict behaviors for situations that have not been seen before.
High-fidelity data is itself in limited quantity to validate all outputs of the SciML model in unexplored input space.
We extend a DeepONet using three different uncertainty mechanisms: mean-variance estimation, evidential uncertainty, and ensembling.
arXiv Detail & Related papers (2023-10-31T18:07:29Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.