AION-10: Technical Design Report for a 10m Atom Interferometer in Oxford
- URL: http://arxiv.org/abs/2508.03491v1
- Date: Tue, 05 Aug 2025 14:20:34 GMT
- Title: AION-10: Technical Design Report for a 10m Atom Interferometer in Oxford
- Authors: K. Bongs, A. Brzakalik, U. Chauhan, S. Dey, O. Ennis, S. Hedges, T. Hird, M. Holynski, S. Lellouch, M. Langlois, B. Stray, B. Bostwick, J. Chen, Z. Eyler, V. Gibson, T. L. Harte, C. C. Hsu, M. Karzazi, C. Lu, B. Millward, J. Mitchell, N. Mouelle, B. Panchumarthi, J. Scheper, U. Schneider, X. Su, Y. Tang, K. Tkalčec, M. Zeuner, S. Zhang, Y. Zhi, K. Clarke, A. Vick, C. F. A. Baynham, O. Buchmüller, D. Evans, L. Hawkins, R. Hobson, L. Iannizzotto-Venezze, A. Josset, D. Lee, E. Pasatembou, B. E. Sauer, M. R. Tarbutt, T. Walker, L. Badurina, A. Beniwal, D. Blas, J. Carlton, J. Ellis, C. McCabe, G. Parish, D. Pathak Govardhan, V. Vaskonen, T. Bowcock, K. Bridges, A. Carroll, J. Coleman, G. Elertas, S. Hindley, C. Metelko, H. Throssell, J. N. Tinsley, E. Bentine, M. Booth, D. Bortoletto, C. Foot, N. Callaghan, C. Gomez-Monedero, K. Hughes, A. James, T. Leese, A. Lowe, J. March-Russell, J. Sander, J. Schelfhout, I. Shipsey, D. Weatherill, D. Wood, S. N. Balashov, M. G. Bason, K. Hussain, H. Labiad, P. Majewski, A. L. Marchant, D. Newbold, Z. Pan, Z. Tam, T. C. Thornton, T. Valenzuela, M. G. D. van der Grinten, I. Wilmut,
- Abstract summary: AION-10 is a 10-meter atom interferometer to be located at Oxford University using ultracold strontium atoms.<n>The design features a 10-meter vertical tower housing two atom interferometer sources in an ultra-high vacuum environment.
- Score: 0.02408688243769188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This Technical Design Report presents AION-10, a 10-meter atom interferometer to be located at Oxford University using ultracold strontium atoms to make precision measurements of fundamental physics. AION-10 serves as both a prototype for future larger-scale experiments and a versatile scientific instrument capable of conducting its own diverse physics programme. The design features a 10-meter vertical tower housing two atom interferometer sources in an ultra-high vacuum environment. Key engineering challenges include achieving nanometer-level vibrational stability and precise magnetic field control. Solutions include active vibration isolation, specialized magnetic shielding, and a modular assembly approach using professional lifting equipment. Detailed analysis confirms the design meets all performance requirements, with critical optical components remaining within our specifications 97% of the time under realistic operating conditions. Vacuum and vibration measurements in the host building validate that the instrument will achieve the precision needed for quantum sensing applications. This work establishes the technical foundation for scaling atom interferometry to longer baselines while creating a cutting-edge facility for precision measurements that could advance our understanding of fundamental physics.
Related papers
- Geometric phase amplification in a clock interferometer for enhanced metrology [0.0]
A clock interferometer provides metrological improvement with respect to its technical-noise-limited counterpart employing a single internal quantum state.
We infer a precision enhancement of 8.8 decibels when measuring a small difference between external fields.
We estimate that tens of decibels of precision enhancement could be attained for measurements with a higher atom flux.
arXiv Detail & Related papers (2024-05-16T16:24:36Z) - Advances in Atom Interferometry and their Impacts on the Performance of Quantum Accelerometers On-board Future Satellite Gravity Missions [0.0]
Recent advances in cold atom interferometry have cleared the path for space applications of quantum inertial sensors.
A comprehensive in-orbit model is developed for a Mach-Zehnder-type cold-atom accelerometer.
arXiv Detail & Related papers (2024-04-16T11:15:41Z) - Interferometry of Atomic Matter Waves in the Cold Atom Lab onboard the
International Space Station [0.2551676739403148]
NASA's Cold Atom Lab operates onboard the International Space Station as a multi-user facility for studies of ultracold atoms.
Atom interferometers are a class of quantum sensors which can use freely falling gases of atoms cooled to sub-photon-recoil temperatures.
A three-pulse Mach-Zehnder interferometer was studied to understand limitations from the influence of ISS vibrations.
Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time.
arXiv Detail & Related papers (2024-02-22T16:41:00Z) - An ion trap design for a space-deployable strontium-ion optical clock [0.0]
Optical atomic clocks demonstrate a better stability and lower systematic uncertainty than the highest performance microwave atomic clocks.
The best performing optical clocks have a large footprint in a laboratory environment and require specialist skills to maintain continuous operation.
We discuss the design of a physics package for a compact laser-cooled 88Sr+ optical clock that would be suitable for space deployment.
arXiv Detail & Related papers (2024-01-23T12:13:44Z) - Atomic interferometer based on optical tweezers [0.0]
We propose and analyze a novel atomic interferometer that uses micro-optical traps (optical tweezers) to manipulate and control the motion of atoms.
The new interferometer allows long probing time, sub micrometer positioning accuracy, and utmost flexibility in shaping of the atomic trajectory.
We discuss two applications well-suited for the unique capabilities of the tweezer interferometer: the measurement of gravitational forces and the study of Casimir-Polder forces between atoms and surfaces.
arXiv Detail & Related papers (2023-08-15T13:42:57Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Interferobot: aligning an optical interferometer by a reinforcement
learning agent [118.43526477102573]
We train an RL agent to align a Mach-Zehnder interferometer, based on images of fringes acquired by a monocular camera.
The agent is trained in a simulated environment, without any hand-coded features or a priori information about the physics.
Thanks to a set of domain randomizations simulating uncertainties in physical measurements, the agent successfully aligns this interferometer without any fine tuning.
arXiv Detail & Related papers (2020-06-03T13:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.