論文の概要: UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
- arxiv url: http://arxiv.org/abs/2508.03520v1
- Date: Tue, 05 Aug 2025 14:46:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.023665
- Title: UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
- Title(参考訳): UPLME:ロバスト共感回帰のための不確かさを意識した確率型言語モデリング
- Authors: Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman, Tom Gedeon,
- Abstract要約: 共感回帰のための教師付き学習は、騒々しい自己報告の共感スコアによって挑戦される。
回帰設定におけるラベルノイズを捕捉する不確実性を考慮した確率的言語モデリングフレームワークUPLMEを提案する。
- 参考スコア(独自算出の注目度): 8.823417072582348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised learning for empathy regression is challenged by noisy self-reported empathy scores. While many algorithms have been proposed for learning with noisy labels in textual classification problems, the regression counterpart is relatively under-explored. We propose UPLME, an uncertainty-aware probabilistic language modelling framework to capture label noise in the regression setting of empathy detection. UPLME includes a probabilistic language model that predicts both empathy score and heteroscedastic uncertainty and is trained using Bayesian concepts with variational model ensembling. We further introduce two novel loss components: one penalises degenerate Uncertainty Quantification (UQ), and another enforces the similarity between the input pairs on which we predict empathy. UPLME provides state-of-the-art performance (Pearson Correlation Coefficient: $0.558\rightarrow0.580$ and $0.629\rightarrow0.634$) in terms of the performance reported in the literature in two public benchmarks, having label noise. Through synthetic label noise injection, we show that UPLME is effective in separating noisy and clean samples based on the predicted uncertainty. UPLME further outperform (Calibration error: $0.571\rightarrow0.376$) a recent variational model ensembling-based UQ method designed for regression problems.
- Abstract(参考訳): 共感回帰のための教師付き学習は、騒々しい自己報告の共感スコアによって挑戦される。
多くのアルゴリズムがテキスト分類問題においてノイズのあるラベルで学習するために提案されているが、回帰法は比較的未探索である。
共感検出の回帰設定においてラベルノイズを捕捉する不確実性を考慮した確率的言語モデリングフレームワークUPLMEを提案する。
UPLMEには、共感スコアと不確定性の両方を予測する確率論的言語モデルが含まれており、変分モデルアンサンブルを用いたベイズの概念を用いて訓練されている。
ひとつは不確実性定量化(UQ)を退避させ、もうひとつは共感を予測する入力ペア間の類似性を強制する。
UPLMEは、ラベルノイズのある2つの公開ベンチマークで文献で報告された性能(Pearson correlation Coefficient: $0.558\rightarrow0.580$と$0.629\rightarrow 0.634$)を提供する。
合成ラベルノイズ注入により,UPLMEは予測された不確実性に基づいてノイズとクリーンサンプルの分離に有効であることを示す。
UPLMEのさらなる性能(キャリブレーションエラー:$0.571\rightarrow0.376$)は、回帰問題のために設計された最近の変分モデルアンサンブルベースのUQ法である。
関連論文リスト
- FADEL: Uncertainty-aware Fake Audio Detection with Evidential Deep Learning [9.960675988638805]
顕在学習を用いた偽音声検出(FADEL)という新しいフレームワークを提案する。
FADELはモデルの不確実性を予測に組み込んでおり、OODシナリオではより堅牢なパフォーマンスを実現している。
本研究では,異なるスプーフィングアルゴリズム間の平均不確かさと等誤差率(EER)の強い相関関係を解析し,不確かさ推定の有効性を示す。
論文 参考訳(メタデータ) (2025-04-22T07:40:35Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
量子振幅推定のための問題調整およびノイズ認識ベイズアルゴリズムであるBAEを提案する。
耐障害性シナリオでは、BAEはハイゼンベルク限界を飽和させることができ、デバイスノイズが存在する場合、BAEはそれを動的に特徴付け、自己適応することができる。
本稿では,振幅推定アルゴリズムのベンチマークを提案し,他の手法に対してBAEをテストする。
論文 参考訳(メタデータ) (2024-12-05T18:09:41Z) - Uncertainty in Language Models: Assessment through Rank-Calibration [65.10149293133846]
言語モデル(LM)は、自然言語生成において有望な性能を示している。
与えられた入力に応答する際の不確実性を正確に定量化することは重要である。
我々は、LMの確実性と信頼性を評価するために、Rank$-$Calibration$と呼ばれる斬新で実用的なフレームワークを開発する。
論文 参考訳(メタデータ) (2024-04-04T02:31:05Z) - Uncertainty-aware Sampling for Long-tailed Semi-supervised Learning [89.98353600316285]
擬似ラベルサンプリングのモデル化プロセスに不確実性を導入し、各クラスにおけるモデル性能が異なる訓練段階によって異なることを考慮した。
このアプローチにより、モデルは異なる訓練段階における擬似ラベルの不確かさを認識でき、それによって異なるクラスの選択閾値を適応的に調整できる。
FixMatchのような他の手法と比較して、UDTSは自然シーン画像データセットの精度を少なくとも5.26%、1.75%、9.96%、1.28%向上させる。
論文 参考訳(メタデータ) (2024-01-09T08:59:39Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Towards Open-Set Test-Time Adaptation Utilizing the Wisdom of Crowds in
Entropy Minimization [47.61333493671805]
テスト時間適応(TTA)メソッドは、未ラベルのターゲットドメインにソース事前学習モデルを適用するために、モデルの予測に依存する。
本稿では, 以下の重要な経験的発見から着想を得た, 単純かつ効果的なサンプル選択法を提案する。
論文 参考訳(メタデータ) (2023-08-14T01:24:18Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
我々は,半教師付き回帰,すなわち不確実連続変分モデル組立(UCVME)に対する新しいアプローチを提案する。
整合性損失は不確実性評価を著しく改善し,不整合回帰の下では,高品質な擬似ラベルをより重要視することができる。
実験の結果,本手法は様々なタスクにおける最先端の代替手段よりも優れており,フルラベルを用いた教師付き手法と競合する可能性が示唆された。
論文 参考訳(メタデータ) (2023-02-15T10:40:51Z) - Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets [23.4536532321199]
不整合データセットのラベルノイズを処理するための不確かさを意識したラベル補正フレームワークを提案する。
本研究では,不均衡なデータセットのラベルノイズを処理するために,不確かさを意識したラベル補正フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-12T11:35:55Z) - Self-Paced Uncertainty Estimation for One-shot Person Re-Identification [9.17071384578203]
本稿では,単発人物の自己ペース不確実性推定ネットワーク(spue-net)を提案する。
自己ペースサンプリング戦略を導入することで,ラベルなしサンプルの擬似ラベルを反復的に推定し,ラベル付きサンプルを拡張できる。
さらに,局所不確実性推定と決定性推定を併用した協調学習手法を適用し,より優れた隠れ空間特徴抽出を実現する。
論文 参考訳(メタデータ) (2021-04-19T09:20:30Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
ラベルノイズの存在は、しばしばディープニューラルネットワークのトレーニングを誤解させる。
人間による注釈付きラベルのエラーは、タスクの難易度レベルに依存する可能性が高いことを示しています。
論文 参考訳(メタデータ) (2020-12-22T06:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。