論文の概要: Cross-patient Seizure Onset Zone Classification by Patient-Dependent Weight
- arxiv url: http://arxiv.org/abs/2508.03635v1
- Date: Tue, 05 Aug 2025 16:50:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.081248
- Title: Cross-patient Seizure Onset Zone Classification by Patient-Dependent Weight
- Title(参考訳): 患者依存重みによる患者横断静置オンセットゾーン分類
- Authors: Xuyang Zhao, Hidenori Sugano, Toshihisa Tanaka,
- Abstract要約: そこで本研究では, 患者固有の重み付けを用いて, 術前モデルを微調整し, 診断性能を向上させる方法を提案する。
その結果,各検査症例の分類精度は向上し,平均10%以上の改善が得られた。
- 参考スコア(独自算出の注目度): 7.773508953474537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the seizure onset zone (SOZ) in patients with focal epilepsy is essential for surgical treatment and remains challenging due to its dependence on visual judgment by clinical experts. The development of machine learning can assist in diagnosis and has made promising progress. However, unlike data in other fields, medical data is usually collected from individual patients, and each patient has different illnesses, physical conditions, and medical histories, which leads to differences in the distribution of each patient's data. This makes it difficult for a machine learning model to achieve consistently reliable performance in every new patient dataset, which we refer to as the "cross-patient problem." In this paper, we propose a method to fine-tune a pretrained model using patient-specific weights for every new test patient to improve diagnostic performance. First, the supervised learning method is used to train a machine learning model. Next, using the intermediate features of the trained model obtained through the test patient data, the similarity between the test patient data and each training patient's data is defined to determine the weight of each training patient to be used in the following fine-tuning. Finally, we fine-tune all parameters in the pretrained model with training data and patient weights. In the experiment, the leave-one-patient-out method is used to evaluate the proposed method, and the results show improved classification accuracy for every test patient, with an average improvement of more than 10%.
- Abstract(参考訳): 局所てんかん患者の発作発生領域(SOZ)の同定は外科的治療に不可欠であり, 臨床専門家による視覚的判断に依存しているため, 依然として困難である。
機械学習の開発は診断に役立ち、有望な進歩を遂げた。
しかし、他の分野でのデータとは異なり、医療データは個々の患者から収集され、各患者は異なる疾患、身体状態、医療史を持ち、各患者のデータの分布に違いをもたらす。
これにより、機械学習モデルが、"クロス患者問題"と呼ぶすべての新しい患者データセットにおいて、一貫した信頼性のあるパフォーマンスを達成することが困難になる。
本稿では,新しい検査患者に対して,患者固有の重み付けを用いて事前訓練したモデルを微調整し,診断性能を向上させる方法を提案する。
まず、教師付き学習法を用いて機械学習モデルを訓練する。
次に、テスト患者データから得られたトレーニングモデルの中間特性を用いて、テスト患者データと各トレーニング患者のデータとの類似性を定義し、以下の微調整で使用するトレーニング患者の体重を決定する。
最後に、トレーニングデータと患者の体重で事前訓練されたモデルのパラメータを微調整する。
実験では, 退院患者アウト法を用いて提案手法の評価を行い, その結果, 平均10%以上の改善率で各検査患者に対する分類精度が向上した。
関連論文リスト
- Pre-Ictal Seizure Prediction Using Personalized Deep Learning [0.0]
世界中で約2300万ないし30%のてんかん患者が薬剤抵抗性てんかん(DRE)を患っている
発作発生の予測不可能さは、安全上の問題や社会的懸念を引き起こし、DRE患者のライフスタイルを制限している。
本研究の目的は、開始から最大2時間前に発作を予測するための改良された技術と方法を使用することであった。
論文 参考訳(メタデータ) (2024-10-07T21:04:41Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
本研究は,全ての患者と1人の患者を対象に訓練を行った際のモデル性能と説明可能性の差異について検討した。
以上の結果から,患者の人口動態は,パフォーマンスや説明可能性,信頼性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2021-12-20T10:51:04Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
本稿では,機械学習技術を用いた重症度評価モデルの開発過程について述べる。
モデルは基本的な患者の基本的個人データのみを必要とするため、患者は自身の重症度を判断できる。
本研究の目的は、患者が自身の重症度をチェックできる医療システムを構築し、同様の重症度を持つ他の患者の過去の治療内容に基づいて、適切な診療所への訪問を通知することである。
論文 参考訳(メタデータ) (2021-09-18T19:56:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。