Automated Algorithmic Discovery for Gravitational-Wave Detection Guided by LLM-Informed Evolutionary Monte Carlo Tree Search
- URL: http://arxiv.org/abs/2508.03661v1
- Date: Tue, 05 Aug 2025 17:18:20 GMT
- Title: Automated Algorithmic Discovery for Gravitational-Wave Detection Guided by LLM-Informed Evolutionary Monte Carlo Tree Search
- Authors: He Wang, Liang Zeng,
- Abstract summary: Evo-MCTS is a framework that combines tree-structured search with evolutionary optimization and large language models to create interpretable algorithmic solutions.<n>Our framework achieves a 20.2% improvement over state-of-the-art gravitational wave detection algorithms on the MLG-1WSC benchmark dataset.
- Score: 10.617016967920863
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computational scientific discovery increasingly relies on algorithms to process complex data and identify meaningful patterns - yet faces persistent challenges in gravitational-wave signal identification. While existing algorithmic approaches like matched filtering (MF) and deep neural networks (DNNs) have achieved partial success, their limitations directly stem from fundamental limitations: MF's excessive computational demands arise from its reliance on predefined theoretical waveform templates, while DNNs' black-box architectures obscure decision logic and introduce hidden biases. We propose Evolutionary Monte Carlo Tree Search (Evo-MCTS), a framework that addresses these limitations through systematic algorithm space exploration guided by domain-aware physical constraints. Our approach combines tree-structured search with evolutionary optimization and large language model heuristics to create interpretable algorithmic solutions. Our Evo-MCTS framework demonstrates substantial improvements, achieving a 20.2\% improvement over state-of-the-art gravitational wave detection algorithms on the MLGWSC-1 benchmark dataset. High-performing algorithm variants consistently exceed thresholds. The framework generates human-interpretable algorithmic pathways that reveal distinct performance patterns. Beyond performance improvements, our framework discovers novel algorithmic combinations, thereby establishing a transferable methodology for automated algorithmic discovery across computational science domains.
Related papers
- Behaviour Space Analysis of LLM-driven Meta-heuristic Discovery [2.0958996366233094]
We investigate meta-heuristic optimisation algorithms automatically generated by Large Language Model driven algorithm discovery methods.<n>We iteratively evolve black-box optimisations, evaluated on 10 functions from the BBOB benchmark suite.<n>We log behavioural metrics including exploration, exploitation, convergence and stagnation measures, for each run, and analyse these via visual projections and network-based representations.
arXiv Detail & Related papers (2025-07-04T14:19:39Z) - Graph-Supported Dynamic Algorithm Configuration for Multi-Objective Combinatorial Optimization [5.481047026874548]
This paper presents a novel graph neural network (GNN) based DRL to configure multi-objective evolutionary algorithms.<n>We model the dynamic algorithm configuration as a Markov decision process, representing the convergence of solutions in the objective space by a graph.<n> Experiments on diverse MOCO challenges indicate that our method outperforms traditional and DRL-based algorithm configuration methods in terms of efficacy and adaptability.
arXiv Detail & Related papers (2025-05-22T09:53:54Z) - Algorithm Discovery With LLMs: Evolutionary Search Meets Reinforcement Learning [12.037588566211348]
We propose to augment evolutionary search by continuously refining the search operator through reinforcement learning (RL) fine-tuning.<n>Our experiments demonstrate that integrating RL with evolutionary search accelerates the discovery of superior algorithms.
arXiv Detail & Related papers (2025-04-07T14:14:15Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Equation discovery framework EPDE: Towards a better equation discovery [50.79602839359522]
We enhance the EPDE algorithm -- an evolutionary optimization-based discovery framework.<n>Our approach generates terms using fundamental building blocks such as elementary functions and individual differentials.<n>We validate our algorithm's noise resilience and overall performance by comparing its results with those from the state-of-the-art equation discovery framework SINDy.
arXiv Detail & Related papers (2024-12-28T15:58:44Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
Large language models (LLMs) are used as sub-routines in algorithms.
LLMs have achieved remarkable empirical success.
Our proposed framework holds promise for advancing LLM-based algorithms.
arXiv Detail & Related papers (2024-07-20T07:39:07Z) - tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models (LLMs) [31.69308712027795]
We study how to harness large language models to automatically discover new tensor network structure search (TN-SS) algorithms.
By observing how human experts innovate in research, we propose an automatic algorithm discovery framework called tnGPS.
The proposed framework is an elaborate prompting pipeline that instruct LLMs to generate new TN-SS algorithms through iterative refinement and enhancement.
arXiv Detail & Related papers (2024-02-04T12:06:13Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Genetically Modified Wolf Optimization with Stochastic Gradient Descent
for Optimising Deep Neural Networks [0.0]
This research aims to analyze an alternative approach to optimizing neural network (NN) weights, with the use of population-based metaheuristic algorithms.
A hybrid between Grey Wolf (GWO) and Genetic Modified Algorithms (GA) is explored, in conjunction with Gradient Descent (SGD)
This algorithm allows for a combination between exploitation and exploration, whilst also tackling the issue of high-dimensionality.
arXiv Detail & Related papers (2023-01-21T13:22:09Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.