論文の概要: Classifying Epistemic Relationships in Human-AI Interaction: An Exploratory Approach
- arxiv url: http://arxiv.org/abs/2508.03673v1
- Date: Sat, 02 Aug 2025 23:41:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.103334
- Title: Classifying Epistemic Relationships in Human-AI Interaction: An Exploratory Approach
- Title(参考訳): 人間とAIの相互作用における疫学的関係の分類--探索的アプローチ
- Authors: Shengnan Yang, Rongqian Ma,
- Abstract要約: 本研究は,研究と教育の文脈において,ユーザがAIをどのように評価し,信頼し,協力するかを調査する。
専門分野にまたがる31人の学者へのインタビューをもとに、5つのパートのコードブックを作成し、5つの関係タイプを特定した。
- 参考スコア(独自算出の注目度): 0.6906005491572401
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As AI systems become integral to knowledge-intensive work, questions arise not only about their functionality but also their epistemic roles in human-AI interaction. While HCI research has proposed various AI role typologies, it often overlooks how AI reshapes users' roles as knowledge contributors. This study examines how users form epistemic relationships with AI-how they assess, trust, and collaborate with it in research and teaching contexts. Based on 31 interviews with academics across disciplines, we developed a five-part codebook and identified five relationship types: Instrumental Reliance, Contingent Delegation, Co-agency Collaboration, Authority Displacement, and Epistemic Abstention. These reflect variations in trust, assessment modes, tasks, and human epistemic status. Our findings show that epistemic roles are dynamic and context-dependent. We argue for shifting beyond static metaphors of AI toward a more nuanced framework that captures how humans and AI co-construct knowledge, enriching HCI's understanding of the relational and normative dimensions of AI use.
- Abstract(参考訳): AIシステムが知識集約的な作業に不可欠なものになると、その機能だけでなく、人間とAIの相互作用における認識的役割についても疑問が生じる。
HCIの研究は様々なAIの役割のタイプポロジーを提案しているが、AIがユーザーの役割を知識コントリビュータとして再認識する方法を見落としていることが多い。
本研究は,研究や教育の文脈において,ユーザがどのようにAIをどのように評価し,信頼し,協力するか,という認識的関係を形成するかを検討する。
専門分野にまたがる31の学術的インタビューをもとに,5部構成のコードブックを開発し,計器的信頼性,緊急デリゲーション,共同作業,権限移転,疫学的欠如という5つの関係タイプを特定した。
これらは、信頼、アセスメントモード、タスク、ヒトのてんかん状態のバリエーションを反映している。
以上の結果より, てんかんの役割は動的であり, 文脈に依存していることが明らかとなった。
我々は、AIの静的な比喩を超えて、人間とAIが知識を共構築する方法を捉え、AI使用のリレーショナルおよび規範的な次元に対するHCIの理解を深める、よりニュアンスなフレームワークに移行することを主張する。
関連論文リスト
- (AI peers) are people learning from the same standpoint: Perception of AI characters in a Collaborative Science Investigation [0.0]
シナリオベースアセスメント(SBA)は、本物の社会的相互作用のコンテキストを提供するためのシミュレーションエージェントを導入する。
近年のテキスト・トゥ・ビデオ技術のようなマルチモーダルAIの進歩により、これらのエージェントはAI生成文字に拡張される。
本研究では,協調科学研究の文脈を反映したSBAにおいて,教師とチームメイトの役割を担っているAIキャラクタを学習者がどう感じているかを検討する。
論文 参考訳(メタデータ) (2025-06-06T15:29:11Z) - When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
我々は,人間とAIの知識伝達能力に関する概念的かつ実験的フレームワークである知識統合と伝達評価(KITE)を紹介する。
最初の大規模人間実験(N=118)を行い,その測定を行った。
2段階のセットアップでは、まずAIを使って問題解決戦略を思いつき、その後独立してソリューションを実装し、モデル説明が人間の理解に与える影響を分離します。
論文 参考訳(メタデータ) (2025-06-05T20:48:16Z) - A Task-Driven Human-AI Collaboration: When to Automate, When to Collaborate, When to Challenge [16.734679201317896]
性能を改善しつつ、適切な人間とAIの統合が有意義なエージェンシーを維持するかを示す。
この枠組みは、実用的で道徳的に健全な人間とAIのコラボレーションの基礎を築いた。
論文 参考訳(メタデータ) (2025-05-23T23:19:15Z) - Assessing employment and labour issues implicated by using AI [0.0]
この章は、AIと労働研究における支配的な還元主義的アプローチを批判している。
タスク、役割、職場環境の相互依存を強調する体系的な視点を提唱する。
論文 参考訳(メタデータ) (2025-04-08T10:14:19Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
意思決定支援システムにおける人工知能の活用は、技術的進歩に不相応に焦点を合わせてきた。
人間中心の視点は、既存のプロセスとのシームレスな統合のためにAIソリューションを設計することで、この懸念を緩和しようとする。
論文 参考訳(メタデータ) (2023-10-30T17:46:38Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
この研究はAIの振る舞いを包括的に調査し、多様な設定がチャーパーの反応に与える影響を分析している。
一連の認知テストを通じて、この研究はチャーパーズの自己認識とパターン認識の能力を評価する。
この研究の興味深い側面は、チャーパーのハンドルやパーソナリティのタイプがパフォーマンスに与える影響を探ることである。
論文 参考訳(メタデータ) (2023-08-30T15:40:18Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
マルチモーダルインタラクション, 感情計算, 自然言語処理において, 選ばれたカンファレンスから16,000以上の論文を調査した。
本論文では,感情関連論文910を同定し,情緒現象の役割について分析した。
我々は、人間の社会的行動や認知状態の機械的理解を高めるために、AIシステムによって感情と感情の予測がどのように使用されるかについて、限られた研究結果を得た。
論文 参考訳(メタデータ) (2023-05-18T09:08:39Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。