Assessing the Impact of Image Super Resolution on White Blood Cell Classification Accuracy
- URL: http://arxiv.org/abs/2508.03759v1
- Date: Mon, 04 Aug 2025 12:03:42 GMT
- Title: Assessing the Impact of Image Super Resolution on White Blood Cell Classification Accuracy
- Authors: Tatwadarshi P. Nagarhalli, Shruti S. Pawar, Soham A. Dahanukar, Uday Aswalekar, Ashwini M. Save, Sanket D. Patil,
- Abstract summary: Accurately classifying white blood cells from microscopic images is essential to identify several illnesses and conditions in medical diagnostics.<n>Deep learning technologies are being employed to quickly and automatically classify images.<n>Some picture improvement techniques, such as image super-resolution, are being utilized to improve the resolution of the photos to get around this issue.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately classifying white blood cells from microscopic images is essential to identify several illnesses and conditions in medical diagnostics. Many deep learning technologies are being employed to quickly and automatically classify images. However, most of the time, the resolution of these microscopic pictures is quite low, which might make it difficult to classify them correctly. Some picture improvement techniques, such as image super-resolution, are being utilized to improve the resolution of the photos to get around this issue. The suggested study uses large image dimension upscaling to investigate how picture-enhancing approaches affect classification performance. The study specifically looks at how deep learning models may be able to understand more complex visual information by capturing subtler morphological changes when image resolution is increased using cutting-edge techniques. The model may learn from standard and augmented data since the improved images are incorporated into the training process. This dual method seeks to comprehend the impact of image resolution on model performance and enhance classification accuracy. A well-known model for picture categorization is used to conduct extensive testing and thoroughly evaluate the effectiveness of this approach. This research intends to create more efficient image identification algorithms customized to a particular dataset of white blood cells by understanding the trade-offs between ordinary and enhanced images.
Related papers
- PixCell: A generative foundation model for digital histopathology images [49.00921097924924]
We introduce PixCell, the first diffusion-based generative foundation model for histopathology.<n>We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H&E-stained whole slide images covering various cancer types.
arXiv Detail & Related papers (2025-06-05T15:14:32Z) - Identifying regions of interest in whole slide images of renal cell carcinoma [0.0]
This study developed an automated system to detect regions of interest (ROIs) in whole slide images of renal cell carcinoma (RCC)<n>The proposed approach is based on an efficient texture descriptor named dominant rotated local binary pattern (DRLBP) and color transformation to reveal and exploit the immense texture variability at the microscopic high magnifications level.<n>The proposed approach results revealed a very efficient image classification and demonstrated efficacy in identifying ROIs.
arXiv Detail & Related papers (2025-04-09T22:28:26Z) - Attention to detail: inter-resolution knowledge distillation [1.927195358774599]
Development of computer vision solutions for gigapixel images in digital pathology is hampered by the large size of whole slide images.
Recent literature has proposed using knowledge distillation to enhance the model performance at reduced image resolutions.
In this work, we propose to distill this information by incorporating attention maps during training.
arXiv Detail & Related papers (2024-01-11T16:16:20Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
Existing generated image detection methods detect visual artifacts in generated images or learn discriminative features from both real and generated images by massive training.
This paper approaches the generated image detection problem from a new perspective: Start from real images.
By finding the commonality of real images and mapping them to a dense subspace in feature space, the goal is that generated images, regardless of their generative model, are then projected outside the subspace.
arXiv Detail & Related papers (2023-11-02T03:09:37Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Pathological Analysis of Blood Cells Using Deep Learning Techniques [0.0]
A neural based network has been proposed for classification of blood cells images into various categories.
The performance of proposed model is better than existing standard architectures and work done by various researchers.
arXiv Detail & Related papers (2021-11-05T05:37:10Z) - A Semi-Supervised Classification Method of Apicomplexan Parasites and
Host Cell Using Contrastive Learning Strategy [6.677163460963862]
This paper proposes a semi-supervised classification method for three kinds of apicomplexan parasites and non-infected host cells microscopic images.
It uses a small number of labeled data and a large number of unlabeled data for training.
In the case where only 1% of microscopic images are labeled, the proposed method reaches an accuracy of 94.90% in a generalized testing set.
arXiv Detail & Related papers (2021-04-14T02:34:50Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Guided interactive image segmentation using machine learning and color
based data set clustering [0.16683739531034203]
We present a novel approach that combines machine learning based interactive image segmentation using supervoxels with a clustering method for the automated identification of similarly colored images in large data sets.
Our approach solves the problem of significant color variability prevalent and often unavoidable in biological and medical images.
arXiv Detail & Related papers (2020-05-15T17:25:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.