When Agents Break Down in Multiagent Path Finding
- URL: http://arxiv.org/abs/2508.03777v1
- Date: Tue, 05 Aug 2025 12:59:30 GMT
- Title: When Agents Break Down in Multiagent Path Finding
- Authors: Foivos Fioravantes, DuĊĦan Knop, Nikolaos Melissinos, Michal Opler,
- Abstract summary: We introduce a new variant that formally models scenarios where some agents may experience delays due to malfunctions.<n>We propose a framework for dynamic schedule adaptation that does not rely on full replanning.<n>We prove that following our primary communication protocol, the increase in makespan after k malfunctions is bounded by k additional turns.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Multiagent Path Finding (MAPF), the goal is to compute efficient, collision-free paths for multiple agents navigating a network from their sources to targets, minimizing the schedule's makespan-the total time until all agents reach their destinations. We introduce a new variant that formally models scenarios where some agents may experience delays due to malfunctions, posing significant challenges for maintaining optimal schedules. Recomputing an entirely new schedule from scratch after each malfunction is often computationally infeasible. To address this, we propose a framework for dynamic schedule adaptation that does not rely on full replanning. Instead, we develop protocols enabling agents to locally coordinate and adjust their paths on the fly. We prove that following our primary communication protocol, the increase in makespan after k malfunctions is bounded by k additional turns, effectively limiting the impact of malfunctions on overall efficiency. Moreover, recognizing that agents may have limited computational capabilities, we also present a secondary protocol that shifts the necessary computations onto the network's nodes, ensuring robustness without requiring enhanced agent processing power. Our results demonstrate that these protocols provide a practical, scalable approach to resilient multiagent navigation in the face of agent failures.
Related papers
- Preventing Rogue Agents Improves Multi-Agent Collaboration [21.955058255432974]
We propose to monitor agents during action prediction and intervene when a future error is likely to occur.<n>Experiments on WhoDunitEnv, code generation tasks and the GovSim environment for resource sustainability show that our approach leads to substantial performance gains.
arXiv Detail & Related papers (2025-02-09T18:35:08Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Collision Avoidance Verification of Multiagent Systems with Learned Policies [9.550601011551024]
This paper presents a backward reachability-based approach for verifying the collision avoidance properties of Multi-Agent Feedback Loops (MA-NFLs)
We account for many uncertainties, making it well aligned with real-world scenarios.
We demonstrate the proposed algorithm can verify collision-free properties of a MA-NFL with agents trained to imitate a collision avoidance algorithm.
arXiv Detail & Related papers (2024-03-05T20:36:26Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
MADiff is a diffusion-based multi-agent learning framework.<n>It works as both a decentralized policy and a centralized controller.<n>Our experiments demonstrate that MADiff outperforms baseline algorithms across various multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Robust Multi-Agent Pickup and Delivery with Delays [5.287544737925232]
Multi-Agent Pickup and Delivery (MAPD) is the problem of computing collision-free paths for a group of agents.
Current algorithms for MAPD do not consider many of the practical issues encountered in real applications.
We present two solution approaches that provide robustness guarantees by planning paths that limit the effects of imperfect execution.
arXiv Detail & Related papers (2023-03-30T14:42:41Z) - Formalizing the Problem of Side Effect Regularization [81.97441214404247]
We propose a formal criterion for side effect regularization via the assistance game framework.
In these games, the agent solves a partially observable Markov decision process.
We show that this POMDP is solved by trading off the proxy reward with the agent's ability to achieve a range of future tasks.
arXiv Detail & Related papers (2022-06-23T16:36:13Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
We show how thisity of agents, which could be a result of malfunction or aging of robots, can add to the uncertainty in coordination.
Our solution, DSDF which tunes the discounted factor for the agents according to uncertainty and use the values to update the utility networks of individual agents.
arXiv Detail & Related papers (2021-09-14T12:02:28Z) - Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity,
and Optimism [33.116006446428756]
We study multi-agent online learning problems in the presence of delays and asynchronicities.
We derive adaptive learning strategies with optimal regret bounds, at both the agent and network levels.
arXiv Detail & Related papers (2020-12-21T18:55:55Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.