Moveless: Minimizing Overhead on QCCDs via Versatile Execution and Low Excess Shuttling
- URL: http://arxiv.org/abs/2508.03914v1
- Date: Tue, 05 Aug 2025 21:02:29 GMT
- Title: Moveless: Minimizing Overhead on QCCDs via Versatile Execution and Low Excess Shuttling
- Authors: Sahil Khan, Suhas Vittal, Kenneth Brown, Jonathan Baker,
- Abstract summary: We propose a compilation scheme specifically tailored for the structural regularity of QEC circuits.<n>Our resulting compiler, leads to QEC circuits which are on average 3.38x faster to execute, and lead to up to two orders of magnitude of improvement in logical error rates with realistic physical error rates.
- Score: 0.5833117322405447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most promising paths towards large scale fault tolerant quantum computation is the use of quantum error correcting stabilizer codes. Just like every other quantum circuit, these codes must be compiled to hardware in a way to minimize the total physical error introduced into the system, for example either due to high latency execution or excessive gates to meet connectivity limitations of the target hardware. However, unlike arbitrary quantum circuits, all syndrome extraction circuits have several common properties, for example they have a bipartite connectivity graph, consist only of commuting subcircuits, among other properties. For the most part, compilation methods have aimed at being generic, able to map any input circuit into executables on the hardware, and therefore cannot appropriately exploit these properties and result in executables which have higher physical error. In the case of modular trapped ion systems, specifically QCCDs, this corresponds to the insertion of excessive shuttling operations necessary to realize arbitrary qubit interactions. We propose a compilation scheme explicitly tailored for the structural regularity of QEC circuits based on several key observations: 1. only ancilla or data (but not both) should be shuttled, 2. stabilizers can be executed in any order meaning we can dynamically modify circuit execution on a per-cycle basis 3. ancilla are indistinguishable meaning any can be selected to begin a stabilizer measurement and retain a fixed-point mapping between cycles, and 4. QCCD hardware limits the number of parallel operations equal to the number traps in the system, meaning fewer ancilla are necessary and can be reused. Our resulting compiler, leads to QEC circuits which are on average 3.38x faster to execute, and lead to up to two orders of magnitude of improvement in logical error rates with realistic physical error rates.
Related papers
- Fault-Tolerant Stabilizer Measurements in Surface Codes with Three-Qubit Gates [1.351813974961217]
We show that stabilizer measurement circuits for unrotated surface codes can be fault-tolerant using single auxiliary qubits and three-qubit gates.<n>These gates enable lower-depth circuits leading to fewer fault locations and potentially shorter QEC cycle times.
arXiv Detail & Related papers (2025-06-10T17:54:23Z) - Optimizing compilation of error correction codes for 2xN quantum dot arrays and its NP-hardness [2.7817719859314263]
Hardware-specific error correction codes can achieve fault-tolerance while respecting other constraints.<n>Recent advancements have demonstrated the shuttling of electron and hole spin qubits through a quantum dot array with high fidelity.<n>We develop a suite of methods for compiling any stabilizer error-correcting code's syndrome-extraction circuit to run with a minimal number of shuttling operations.
arXiv Detail & Related papers (2025-01-15T19:00:00Z) - Universal quantum computation via scalable measurement-free error correction [45.29832252085144]
We show that universal quantum computation can be made fault-tolerant in a scenario where the error-correction is implemented without mid-circuit measurements.<n>We introduce a measurement-free deformation protocol of the Bacon-Shor code to realize a logical $mathitCCZ$ gate.<n>In particular, our findings support that below-breakeven logical performance is achievable with a circuit-level error rate below $10-3$.
arXiv Detail & Related papers (2024-12-19T18:55:44Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Measurement-free fault-tolerant quantum error correction in near-term
devices [0.0]
We provide a novel scheme to perform QEC cycles without the need of measuring qubits.
We benchmark logical failure rates of the scheme in comparison to a flag-qubit based EC cycle.
We outline how our scheme could be implemented in ion traps and with neutral atoms in a tweezer array.
arXiv Detail & Related papers (2023-07-25T07:22:23Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - ISAAQ: Ising Machine Assisted Quantum Compiler [3.8137985834223502]
We propose ISing mAchine Assisted Quantum compiler (ISAAQ) to perform qubit routing with Ising machines.
ISAAQ accurately estimates the compilation costs by updating itself using previous compilation results.
ISAAQ exploits a cost-reduction method that implements commutative logical Controlled-NOT (CNOT) gates with fewer physical CNOT gates.
arXiv Detail & Related papers (2023-03-06T01:47:10Z) - Quantum Circuit Resizing [9.664680936017533]
Existing quantum systems provide very limited physical qubit counts, trying to execute a quantum algorithm/circuit on them that have a higher number of logical qubits than physically available lead to a compile-time error.
Given that it is unrealistic to expect existing quantum systems to provide, in near future, sufficient number of qubits that can accommodate large circuit, there is a pressing need to explore strategies that can somehow execute large circuits on small systems.
arXiv Detail & Related papers (2022-12-30T11:37:15Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.