論文の概要: Point-Based Shape Representation Generation with a Correspondence-Preserving Diffusion Model
- arxiv url: http://arxiv.org/abs/2508.03925v1
- Date: Tue, 05 Aug 2025 21:36:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.453396
- Title: Point-Based Shape Representation Generation with a Correspondence-Preserving Diffusion Model
- Title(参考訳): 対応保存拡散モデルを用いた点ベース形状表現生成
- Authors: Shen Zhu, Yinzhu Jin, Ifrah Zawar, P. Thomas Fletcher,
- Abstract要約: 本稿では,対応した点ベース形状表現を生成するための拡散モデルを提案する。
OASIS-3(Open Access Series of Imaging Studies 3, OASIS-3)と対応した形状表現データを用いて,我々の対応保存モデルがポイントベース海馬形状表現を効果的に生成できることを実証した。
- 参考スコア(独自算出の注目度): 1.5624421399300303
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a diffusion model designed to generate point-based shape representations with correspondences. Traditional statistical shape models have considered point correspondences extensively, but current deep learning methods do not take them into account, focusing on unordered point clouds instead. Current deep generative models for point clouds do not address generating shapes with point correspondences between generated shapes. This work aims to formulate a diffusion model that is capable of generating realistic point-based shape representations, which preserve point correspondences that are present in the training data. Using shape representation data with correspondences derived from Open Access Series of Imaging Studies 3 (OASIS-3), we demonstrate that our correspondence-preserving model effectively generates point-based hippocampal shape representations that are highly realistic compared to existing methods. We further demonstrate the applications of our generative model by downstream tasks, such as conditional generation of healthy and AD subjects and predicting morphological changes of disease progression by counterfactual generation.
- Abstract(参考訳): 本稿では,対応した点ベース形状表現を生成するための拡散モデルを提案する。
従来の統計的形状モデルは点対応を広範囲に考慮してきたが、現在の深層学習法では考慮せず、無秩序な点雲に焦点をあてている。
点雲の現在の深部生成モデルは、生成された形状間の点対応を持つ生成形状に対処しない。
本研究の目的は,学習データに存在する点対応を保存した,現実的な点ベース形状表現を生成可能な拡散モデルを定式化することである。
我々は,OASIS-3(Open Access Series of Imaging Studies 3)から派生した形状表現データを用いて,既存の手法と比較して非常に現実的な点に基づく海馬形状表現を効果的に生成できることを実証した。
さらに,健常者およびAD被験者の条件付き生成や,予防的生成による疾患進行の形態的変化の予測など,下流タスクによる生成モデルの応用を実証する。
関連論文リスト
- An End-to-End Deep Learning Generative Framework for Refinable Shape
Matching and Generation [45.820901263103806]
In-Silico Clinical Trials (ISCTs) の必要条件としての形状生成モデルの構築
本研究では,非教師なしの幾何学的深層学習モデルを構築し,潜在空間における補修可能な形状対応を確立する。
提案するベースモデルを,より可変性を高めるために,結合形状生成クラスタリングマルチアトラスフレームワークに拡張する。
論文 参考訳(メタデータ) (2024-03-10T21:33:53Z) - Make-A-Shape: a Ten-Million-scale 3D Shape Model [52.701745578415796]
本稿では,大規模な効率的なトレーニングを目的とした新しい3次元生成モデルであるMake-A-Shapeを紹介する。
まずウェーブレットツリー表現を革新し、サブバンド係数フィルタリングスキームを定式化して形状をコンパクトに符号化する。
我々は、粗いウェーブレット係数の生成を効果的に学習するために、我々のモデルを訓練するためのサブバンド適応型トレーニング戦略を導出する。
論文 参考訳(メタデータ) (2024-01-20T00:21:58Z) - Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models [83.35835521670955]
Surf-Dは任意の位相を持つ表面として高品質な3次元形状を生成する新しい方法である。
非符号距離場(UDF)を曲面表現として用いて任意の位相を許容する。
また、ポイントベースのAutoEncoderを用いて、UDFを正確に符号化するためのコンパクトで連続的な潜在空間を学習する新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:56:01Z) - Hybrid Neural Diffeomorphic Flow for Shape Representation and Generation
via Triplane [16.684276798449115]
HNDFは、基礎となる表現を暗黙的に学習し、複雑な高密度対応を明示的に軸整列三面体特徴に分解する手法である。
新しい3次元形状を直接生成する従来の手法とは異なり、微分同相流による変形テンプレート形状による形状生成の考え方を探求する。
論文 参考訳(メタデータ) (2023-07-04T23:28:01Z) - Zero-Shot 3D Shape Correspondence [67.18775201037732]
本稿では,3次元形状間の対応性を計算するためのゼロショット手法を提案する。
我々は、最近の基礎モデルの言語と視覚における例外的な推論能力を活用している。
提案手法は, 強い非等尺形状の間において, ゼロショット方式で高確率な結果をもたらす。
論文 参考訳(メタデータ) (2023-06-05T21:14:23Z) - NAISR: A 3D Neural Additive Model for Interpretable Shape Representation [10.284366517948929]
科学的な形状発見のための解釈可能な形状表現のための3次元ニューラル付加モデル(テキストNAISR$)を提案する。
本手法は, 形状人口の傾向を把握し, 形状移動による患者固有の予測を可能にする。
我々の実験は、textitStarman$が解釈可能性を維持しながら優れた形状復元性能を発揮することを示した。
論文 参考訳(メタデータ) (2023-03-16T11:18:04Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
メッシュ生成のための新しいスパース潜在点拡散モデルを設計する。
私たちの重要な洞察は、ポイントクラウドをメッシュの中間表現と見なし、代わりにポイントクラウドの分布をモデル化することです。
提案したスパース潜在点拡散モデルにより,生成品質と制御性において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-03-14T14:25:29Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation [52.038346313823524]
本稿では,ウェーブレット領域における連続的暗黙表現の直接生成モデリングを可能にする3次元形状生成の新しい手法を提案する。
具体的には、1対の粗い係数と細部係数の体積を持つコンパクトなウェーブレット表現を提案し、トランケートされた符号付き距離関数とマルチスケールの生体直交ウェーブレットを介して3次元形状を暗黙的に表現する。
論文 参考訳(メタデータ) (2022-09-19T02:51:48Z) - Landmark-free Statistical Shape Modeling via Neural Flow Deformations [0.5897108307012394]
本稿では,トレーニングインスタンス間の密接な対応を必要とせず,形状変化を学習する新しい形状モデリング手法であるFlowSSMを提案する。
当モデルでは, 遠位端大腿骨・肝臓に先立って, 表現的かつ頑健な形状を提供することで, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-14T18:17:19Z) - Autoregressive 3D Shape Generation via Canonical Mapping [92.91282602339398]
トランスフォーマーは、画像、音声、テキスト生成など、様々な生成タスクで顕著なパフォーマンスを示している。
本稿では,変圧器のパワーをさらに活用し,それを3Dポイントクラウド生成のタスクに活用することを目的とする。
条件付き形状生成への応用として,本モデルを簡単にマルチモーダル形状完成に拡張することができる。
論文 参考訳(メタデータ) (2022-04-05T03:12:29Z) - Functional additive regression on shape and form manifolds of planar
curves [0.0]
我々は、形と形を、翻訳、回転、および -- 形状について -- の同値類として定義する。
平面曲線やランドマークの形状や形状のモデルに一般化された加法的回帰を拡張します。
論文 参考訳(メタデータ) (2021-09-06T17:43:32Z) - Deep Implicit Templates for 3D Shape Representation [70.9789507686618]
深い暗黙表現における明示的な対応推論を支援する新しい3次元形状表現を提案する。
我々のキーとなる考え方は、テンプレートの暗黙関数の条件変形としてDIFを定式化することである。
提案手法は,形状の集合に対する一般的な暗黙テンプレートを学習するだけでなく,すべての形状を相互に同時に対応させることも可能であることを示す。
論文 参考訳(メタデータ) (2020-11-30T06:01:49Z) - Discrete Point Flow Networks for Efficient Point Cloud Generation [36.03093265136374]
生成モデルは3次元形状とその統計的バリエーションをモデル化するのに有効であることが証明されている。
任意の大きさの3次元点雲を生成するために,フローの正規化に基づく潜在変数モデルを導入する。
単一ビュー形状再構成では、最先端のボクセル、ポイントクラウド、メッシュベースの手法と同等の結果が得られる。
論文 参考訳(メタデータ) (2020-07-20T14:48:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。