MOTIF: Multi-strategy Optimization via Turn-based Interactive Framework
- URL: http://arxiv.org/abs/2508.03929v1
- Date: Tue, 05 Aug 2025 21:45:36 GMT
- Title: MOTIF: Multi-strategy Optimization via Turn-based Interactive Framework
- Authors: Nguyen Viet Tuan Kiet, Dao Van Tung, Tran Cong Dao, Huynh Thi Thanh Binh,
- Abstract summary: We introduce a broader formulation of solver design as a multi-strategy optimization problem, which seeks to jointly improve a set of interdependent components.<n>At each turn, an agent improves one component by leveraging the history of both its own and its opponent's prior updates.<n> Experiments across multiple COP domains show that MOTIF consistently outperforms state-of-the-art methods.
- Score: 4.012351415340318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing effective algorithmic components remains a fundamental obstacle in tackling NP-hard combinatorial optimization problems (COPs), where solvers often rely on carefully hand-crafted strategies. Despite recent advances in using large language models (LLMs) to synthesize high-quality components, most approaches restrict the search to a single element - commonly a heuristic scoring function - thus missing broader opportunities for innovation. In this paper, we introduce a broader formulation of solver design as a multi-strategy optimization problem, which seeks to jointly improve a set of interdependent components under a unified objective. To address this, we propose Multi-strategy Optimization via Turn-based Interactive Framework (MOTIF) - a novel framework based on Monte Carlo Tree Search that facilitates turn-based optimization between two LLM agents. At each turn, an agent improves one component by leveraging the history of both its own and its opponent's prior updates, promoting both competitive pressure and emergent cooperation. This structured interaction broadens the search landscape and encourages the discovery of diverse, high-performing solutions. Experiments across multiple COP domains show that MOTIF consistently outperforms state-of-the-art methods, highlighting the promise of turn-based, multi-agent prompting for fully automated solver design.
Related papers
- Large Language Models for Design Structure Matrix Optimization [4.513609458468522]
In complex engineering systems, the interdependencies among components or development activities are often modeled and analyzed using Design Structure Matrix (DSM)<n>Reorganizing elements within a DSM to minimize feedback loops and enhance modularity or process efficiency constitutes a challenging optimization problem in engineering design and operations.<n>In this study, we explore the potential of Large Language Models (LLMs) for helping solve such CO problems by leveraging their capabilities for advanced reasoning and contextual understanding.
arXiv Detail & Related papers (2025-06-11T13:53:35Z) - RAG/LLM Augmented Switching Driven Polymorphic Metaheuristic Framework [5.10888539576355]
Polymorphic Metaheuristic Framework (PMF) is a self-adaptive metaheuristic switching mechanism driven by real-time performance feedback and dynamic algorithmic selection.<n>By integrating AI-driven decision-making and self-correcting mechanisms, PMF paves the way for scalable, intelligent, and autonomous optimization frameworks.
arXiv Detail & Related papers (2025-05-20T01:41:22Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization [17.392822956504848]
We propose a reinforcement learning framework designed to construct high-quality solutions for multi-agent tasks efficiently.<n>PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities.<n>We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency.
arXiv Detail & Related papers (2024-09-05T17:49:18Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning [8.389454219309837]
multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations.
We propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent.
With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm.
arXiv Detail & Related papers (2024-04-12T05:02:49Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.