Prototype-Driven Structure Synergy Network for Remote Sensing Images Segmentation
- URL: http://arxiv.org/abs/2508.04022v1
- Date: Wed, 06 Aug 2025 02:29:40 GMT
- Title: Prototype-Driven Structure Synergy Network for Remote Sensing Images Segmentation
- Authors: Junyi Wang, Jinjiang Li, Guodong Fan, Yakun Ju, Xiang Fang, Alex C. Kot,
- Abstract summary: This paper proposes a Prototype-Driven Structure Synergy Network (PDSSNet)<n>The design of PDSSNet is based on a core concept, a complete ground object is jointly defined by its invariant class semantics and its variant spatial structure.<n>Extensive experiments demonstrate that PDSSNet outperforms state-of-the-art methods.
- Score: 36.11399269900789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the semantic segmentation of remote sensing images, acquiring complete ground objects is critical for achieving precise analysis. However, this task is severely hindered by two major challenges: high intra-class variance and high inter-class similarity. Traditional methods often yield incomplete segmentation results due to their inability to effectively unify class representations and distinguish between similar features. Even emerging class-guided approaches are limited by coarse class prototype representations and a neglect of target structural information. Therefore, this paper proposes a Prototype-Driven Structure Synergy Network (PDSSNet). The design of this network is based on a core concept, a complete ground object is jointly defined by its invariant class semantics and its variant spatial structure. To implement this, we have designed three key modules. First, the Adaptive Prototype Extraction Module (APEM) ensures semantic accuracy from the source by encoding the ground truth to extract unbiased class prototypes. Subsequently, the designed Semantic-Structure Coordination Module (SSCM) follows a hierarchical semantics-first, structure-second principle. This involves first establishing a global semantic cognition, then leveraging structural information to constrain and refine the semantic representation, thereby ensuring the integrity of class information. Finally, the Channel Similarity Adjustment Module (CSAM) employs a dynamic step-size adjustment mechanism to focus on discriminative features between classes. Extensive experiments demonstrate that PDSSNet outperforms state-of-the-art methods. The source code is available at https://github.com/wangjunyi-1/PDSSNet.
Related papers
- Center-guided Classifier for Semantic Segmentation of Remote Sensing Images [2.803715177543843]
CenterSeg is a novel classifier for semantic segmentation of remote sensing images.<n>It solves problems with multiple prototypes, direct supervision under Grassmann manifold, and interpretability strategy.<n>Besides the superior performance, CenterSeg has the advantages of simplicity, lightweight, compatibility, and interpretability.
arXiv Detail & Related papers (2025-03-21T09:21:37Z) - Hunting Attributes: Context Prototype-Aware Learning for Weakly
Supervised Semantic Segmentation [22.591512454923883]
We argue that the knowledge bias between instances and contexts affects the capability of the prototype to sufficiently understand instance semantics.
Inspired by prototype learning theory, we propose leveraging prototype awareness to capture diverse and fine-grained feature attributes of instances.
We present a Context Prototype-Aware Learning (CPAL) strategy, which leverages semantic context to enrich instance comprehension.
arXiv Detail & Related papers (2024-03-12T13:11:58Z) - SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning [0.6792605600335813]
Zero-Shot Learning (ZSL) presents the challenge of identifying categories not seen during training.<n>We introduce a Semantic-Enhanced Representations for Zero-Shot Learning (SEER-ZSL)<n>First, we aim to distill meaningful semantic information using a probabilistic encoder, enhancing the semantic consistency and robustness.<n>Second, we distill the visual space by exploiting the learned data distribution through an adversarially trained generator. Third, we align the distilled information, enabling a mapping of unseen categories onto the true data manifold.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - Beyond Prototypes: Semantic Anchor Regularization for Better
Representation Learning [82.29761875805369]
One of the ultimate goals of representation learning is to achieve compactness within a class and well-separability between classes.
We propose a novel perspective to use pre-defined class anchors serving as feature centroid to unidirectionally guide feature learning.
The proposed Semantic Anchor Regularization (SAR) can be used in a plug-and-play manner in the existing models.
arXiv Detail & Related papers (2023-12-19T05:52:38Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Semantic Feature Integration network for Fine-grained Visual
Classification [5.182627302449368]
We propose the Semantic Feature Integration network (SFI-Net) to address the above difficulties.
By eliminating unnecessary features and reconstructing the semantic relations among discriminative features, our SFI-Net has achieved satisfying performance.
arXiv Detail & Related papers (2023-02-13T07:32:25Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
Few-shot segmentation aims to segment unseen-class objects given only a handful of densely labeled samples.
We propose a simple yet versatile framework in the spirit of divide-and-conquer.
Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information.
arXiv Detail & Related papers (2022-04-21T06:21:14Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - SSA: Semantic Structure Aware Inference for Weakly Pixel-Wise Dense
Predictions without Cost [36.27226683586425]
The semantic structure aware inference (SSA) is proposed to explore the semantic structure information hidden in different stages of the CNN-based network to generate high-quality CAM in the model inference.
The proposed method has the advantage of no parameters and does not need to be trained. Therefore, it can be applied to a wide range of weakly-supervised pixel-wise dense prediction tasks.
arXiv Detail & Related papers (2021-11-05T11:07:21Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning.
We argue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task.
Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection.
arXiv Detail & Related papers (2021-06-04T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.