論文の概要: AgREE: Agentic Reasoning for Knowledge Graph Completion on Emerging Entities
- arxiv url: http://arxiv.org/abs/2508.04118v1
- Date: Wed, 06 Aug 2025 06:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.568866
- Title: AgREE: Agentic Reasoning for Knowledge Graph Completion on Emerging Entities
- Title(参考訳): AgREE: 新しいエンティティに関する知識グラフ補完のためのエージェント推論
- Authors: Ruochen Zhao, Simone Conia, Eric Peng, Min Li, Saloni Potdar,
- Abstract要約: Agentic Reasoning for Emerging Entities (AgREE)は、反復的な検索アクションと多段階推論を組み合わせて、リッチな知識グラフ三重項を動的に構築する新しいフレームワークである。
AgREEは、知識グラフ三重項を構築する既存の方法、特に言語モデルのトレーニングプロセスで見られなかった新興エンティティにおいて、非常に優れています。
本研究は,エージェントに基づく推論と戦略情報検索を組み合わせることで,最新の知識グラフを維持することの有効性を実証する。
- 参考スコア(独自算出の注目度): 16.03316404374351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-domain Knowledge Graph Completion (KGC) faces significant challenges in an ever-changing world, especially when considering the continual emergence of new entities in daily news. Existing approaches for KGC mainly rely on pretrained language models' parametric knowledge, pre-constructed queries, or single-step retrieval, typically requiring substantial supervision and training data. Even so, they often fail to capture comprehensive and up-to-date information about unpopular and/or emerging entities. To this end, we introduce Agentic Reasoning for Emerging Entities (AgREE), a novel agent-based framework that combines iterative retrieval actions and multi-step reasoning to dynamically construct rich knowledge graph triplets. Experiments show that, despite requiring zero training efforts, AgREE significantly outperforms existing methods in constructing knowledge graph triplets, especially for emerging entities that were not seen during language models' training processes, outperforming previous methods by up to 13.7%. Moreover, we propose a new evaluation methodology that addresses a fundamental weakness of existing setups and a new benchmark for KGC on emerging entities. Our work demonstrates the effectiveness of combining agent-based reasoning with strategic information retrieval for maintaining up-to-date knowledge graphs in dynamic information environments.
- Abstract(参考訳): オープンドメイン知識グラフ補完(KGC)は、特に日々のニュースにおける新しいエンティティの継続的な出現を考慮すると、常に変化する世界で大きな課題に直面します。
既存のKGCのアプローチは、主に事前訓練された言語モデルのパラメトリック知識、事前構築されたクエリ、または単一ステップの検索に頼っている。
それでも、不人気なエンティティや新興エンティティに関する、包括的で最新の情報をキャプチャできないことが多い。
この目的のために我々は,反復的検索行動と多段階推論を組み合わせたエージェントベースの新しいフレームワークであるAgREE(Agenic Reasoning for Emerging Entities)を導入し,リッチな知識グラフ三重項を動的に構築する。
実験によると、訓練の労力がゼロであるにもかかわらず、AgREEは知識グラフ三重項の構築における既存の手法、特に言語モデルのトレーニングプロセスで見られなかった新興エンティティの手法を著しく上回り、以前の手法を最大13.7%上回っている。
さらに、既存の設備の根本的な弱点に対処する新たな評価手法と、新興企業に対するKGCの新たなベンチマークを提案する。
本研究は,エージェントに基づく推論と戦略的情報検索を組み合わせることで,動的情報環境における最新の知識グラフを維持することの有効性を実証する。
関連論文リスト
- Towards Improving Long-Tail Entity Predictions in Temporal Knowledge Graphs through Global Similarity and Weighted Sampling [53.11315884128402]
時間知識グラフ(TKG)補完モデルは、伝統的にトレーニング中にグラフ全体へのアクセスを前提としている。
本稿では,TKGに特化して設計されたインクリメンタルトレーニングフレームワークを提案する。
提案手法は,モデルに依存しない拡張層と加重サンプリング戦略を組み合わせることで,既存のTKG補完手法を拡張および改善することができる。
論文 参考訳(メタデータ) (2025-07-25T06:02:48Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - GraphOracle: A Foundation Model for Knowledge Graph Reasoning [9.894106590443714]
知識グラフ間の推論を統一する関係中心基盤モデルであるtextbftextscGraphOracleを紹介する。
クエリ依存型アテンション機構は,関係性と実体性の両方について帰納的表現を学習するために開発された。
多様な知識グラフの事前学習と、数分レベルの微調整により、実体、関係、グラフ全体に対する効果的な一般化が可能となる。
論文 参考訳(メタデータ) (2025-05-16T11:14:57Z) - Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning [51.0864247376786]
学習過程を通じて進化する知識グラフを構築する知識グラフ強化多モードモデル(KG-GMM)を導入する。
テスト中,生成されたテキスト内の関係を解析し,特定のカテゴリを特定する知識グラフ拡張推論手法を提案する。
論文 参考訳(メタデータ) (2025-03-24T07:20:43Z) - A Contextualized BERT model for Knowledge Graph Completion [0.0]
知識グラフ補完(KGC)のためのコンテキスト化BERTモデルを提案する。
本モデルでは,エンティティ記述や負の三重項サンプリングの必要性を排除し,計算要求を低減し,性能を向上する。
FB15k-237とWN18RRでは,Hit@1が5.3%向上し,4.88%向上した。
論文 参考訳(メタデータ) (2024-12-15T02:03:16Z) - Path-based Explanation for Knowledge Graph Completion [17.541247786437484]
GNNベースの知識グラフ補完モデルの結果に対する適切な説明は、モデルの透明性を高める。
KGCタスクを説明するための既存のプラクティスは、インスタンス/サブグラフベースのアプローチに依存している。
我々は、GNNベースのモデルを探索する最初のパスベースのKGC説明器であるPower-Linkを提案する。
論文 参考訳(メタデータ) (2024-01-04T14:19:37Z) - A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and
Prospects [73.44022660932087]
時間的特性は、かなりの量の知識で顕著に明らかである。
新たな知識の継続的な出現、構造化されていないデータから構造化された情報を抽出するアルゴリズムの弱点、ソースデータセットにおける情報の欠如を引用する。
TKGC(Temporal Knowledge Graph Completion)のタスクは、利用可能な情報に基づいて行方不明アイテムを予測することを目的として、注目を集めている。
論文 参考訳(メタデータ) (2023-08-04T16:49:54Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
知識グラフ推論(KGR)は、知識グラフに基づくマイニング論理則に基づいて、既存の事実から新しい事実を推論することを目的としている。
質問応答やレコメンデーションシステムなど、多くのAIアプリケーションでKGを使うことに大きなメリットがあることが証明されている。
論文 参考訳(メタデータ) (2022-12-12T08:40:04Z) - Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information [31.10140298420744]
時間的知識グラフ(TKG)のための数発のアウト・オブ・グラフ(OOG)リンク予測タスクを提案する。
メタラーニングフレームワークを用いて、未知のエンティティに関するリンクから、欠落したエンティティを予測する。
我々のモデルは3つのデータセットすべてにおいて優れた性能を達成する。
論文 参考訳(メタデータ) (2022-11-15T14:23:07Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Learning to Sample and Aggregate: Few-shot Reasoning over Temporal
Knowledge Graphs [13.230166885504202]
本稿では,時間的知識グラフ推論という,現実的だが未探索な問題について考察する。
進化するグラフにおける極めて限定的な観測に基づいて、新しい実体の将来の事実を予測することを目的としている。
本稿ではメタ時間知識グラフ推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-16T22:40:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。