論文の概要: A machine learning approach for image classification in synthetic aperture RADAR
- arxiv url: http://arxiv.org/abs/2508.04234v1
- Date: Wed, 06 Aug 2025 09:16:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.649253
- Title: A machine learning approach for image classification in synthetic aperture RADAR
- Title(参考訳): 合成開口レーダにおける画像分類のための機械学習手法
- Authors: Romina Gaburro, Patrick Healy, Shraddha Naidu, Clifford Nolan,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)による地上の物体の識別と分類の問題点を考察する。
具体的には、シミュレーションされたSARデータと再構成された画像の両方を用いてオブジェクトの形状を分類するために、単一散乱近似を採用し、これらの手法の成功を比較した。
次に、衛星センチネル-1から実際のSAR画像中の氷の種類を特定し、どちらの実験でも高い分類精度(geq$75%)を達成する。
- 参考スコア(独自算出の注目度): 0.18749305679160366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem in Synthetic Aperture RADAR (SAR) of identifying and classifying objects located on the ground by means of Convolutional Neural Networks (CNNs). Specifically, we adopt a single scattering approximation to classify the shape of the object using both simulated SAR data and reconstructed images from this data, and we compare the success of these approaches. We then identify ice types in real SAR imagery from the satellite Sentinel-1. In both experiments we achieve a promising high classification accuracy ($\geq$75\%). Our results demonstrate the effectiveness of CNNs in using SAR data for both geometric and environmental classification tasks. Our investigation also explores the effect of SAR data acquisition at different antenna heights on our ability to classify objects successfully.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)を用いて地上に位置する物体を識別・分類するSAR(Synthetic Aperture RADAR)の問題点を考察する。
具体的には、シミュレーションされたSARデータと再構成された画像の両方を用いてオブジェクトの形状を分類するために、単一散乱近似を採用し、これらの手法の成功を比較した。
次に、衛星Sentinel-1から実際のSAR画像中の氷の型を同定する。
どちらの実験でも、有望な高い分類精度($75\%)を達成する。
本研究は,SARデータを用いたCNNの幾何学的・環境的分類作業における有効性を示すものである。
また、異なるアンテナ高さでのSARデータ取得が、オブジェクトの分類を成功させる能力に与える影響についても検討した。
関連論文リスト
- Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
自己教師付き学習(SSL)により、地球観測のための視覚基盤モデルの開発が可能になった。
EOでは、この課題は衛星画像に共通する冗長性と重尾分布によって増幅される。
本稿では,データセットの多様性とバランスを最大化し,SSL事前トレーニングを改善するために設計された動的データセットプルーニング戦略を提案する。
論文 参考訳(メタデータ) (2025-04-09T15:13:26Z) - SAR-W-MixMAE: SAR Foundation Model Training Using Backscatter Power Weighting [3.618534280726541]
マスク付きオートエンコーダ(MAE)などの基礎モデルアプローチや、そのバリエーションが衛星画像に適用されている。
セマンティックラベリングによるデータセット作成の困難さと光学画像に対する高ノイズコンテントのため、SAR(Synthetic Aperture Radar)データは基礎モデルの分野ではあまり研究されていない。
本研究では,マスク付きオートエンコーダ,特にSentinel-1 SAR画像上のMixMAEとそのSAR画像分類タスクへの影響について検討した。
論文 参考訳(メタデータ) (2025-03-03T05:09:44Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
本稿では,ニューラルネットワークによる合成開口レーダ(SAR)画像から,事実上有意義な船舶検出問題について検討する。
本稿では,CentralNetに基づく双方向協調注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ShipNet(略してSAR-ShipNet)を提案する。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
論文 参考訳(メタデータ) (2022-03-29T12:27:04Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - Image-to-Height Domain Translation for Synthetic Aperture Sonar [3.2662392450935416]
本研究では,等方的および異方的テクスチャに関する集合幾何学に焦点をあてる。
集合幾何学の低放牧角度は、異方性テクスチャに対するソナーパスの配向と相まって、画像アライメントや他の多視点シーン理解フレームワークにとって重要な課題である。
論文 参考訳(メタデータ) (2021-12-12T19:53:14Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Weakly-supervised land classification for coastal zone based on deep convolutional neural networks by incorporating dual-polarimetric characteristics into training dataset [1.0494061710470493]
本研究では, 空間偏光合成開口レーダ(PolSAR)を用いた意味的セグメンテーションにおけるDCNNの性能について検討する。
PolSARデータを用いたセマンティックセグメンテーションタスクは、SARデータの特徴とアノテート手順が考慮されている場合、弱い教師付き学習に分類することができる。
次に、SegNet、U-Net、LinkNetを含む3つのDCNNモデルが実装されている。
論文 参考訳(メタデータ) (2020-03-30T17:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。