論文の概要: A Visual Tool for Interactive Model Explanation using Sensitivity Analysis
- arxiv url: http://arxiv.org/abs/2508.04269v1
- Date: Wed, 06 Aug 2025 09:53:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.666794
- Title: A Visual Tool for Interactive Model Explanation using Sensitivity Analysis
- Title(参考訳): 感性分析を用いた対話型モデル記述のための視覚ツール
- Authors: Manuela Schuler,
- Abstract要約: 機械学習(ML)モデルの振る舞いを探索し理解するためのPythonベースのツールであるSAInTを提案する。
本システムはHuman-in-the-Loop属性(HITL)をサポートし,モデルの設定,トレーニング,評価,説明を可能にする。
本研究では,タイタニックデータセット上での生存を予測し,特徴選択とデータ改質をいかに誘導できるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SAInT, a Python-based tool for visually exploring and understanding the behavior of Machine Learning (ML) models through integrated local and global sensitivity analysis. Our system supports Human-in-the-Loop (HITL) workflows by enabling users - both AI researchers and domain experts - to configure, train, evaluate, and explain models through an interactive graphical interface without programming. The tool automates model training and selection, provides global feature attribution using variance-based sensitivity analysis, and offers per-instance explanation via LIME and SHAP. We demonstrate the system on a classification task predicting survival on the Titanic dataset and show how sensitivity information can guide feature selection and data refinement.
- Abstract(参考訳): 我々は,ローカルおよびグローバルな感度分析を統合して機械学習(ML)モデルの振る舞いを視覚的に探索し,理解する,PythonベースのツールであるSAInTを提案する。
我々のシステムは、AI研究者とドメインエキスパートの両方が、プログラミングなしでインタラクティブなグラフィカルインターフェースを通じてモデルを構成、トレーニング、評価、説明できるようにすることで、Human-in-the-Loop(HITL)ワークフローをサポートします。
このツールはモデルトレーニングと選択を自動化し、分散に基づく感度分析を用いてグローバルな特徴属性を提供し、LIMEとSHAPを介してインスタンスごとの説明を提供する。
本研究では,タイタニックデータセット上での生存を予測し,特徴選択とデータ改質をいかに誘導できるかを示す。
関連論文リスト
- PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
本稿では,データ視覚化における大規模言語モデルの習熟度を評価するために設計された,新しい合成データセットを提案する。
我々のデータセットは、制御されたパラメータを使って生成され、潜在的な現実世界シナリオの包括的カバレッジが保証されます。
我々は、画像中の視覚データに関連する質問を多モーダルテキストプロンプトを用いて、いくつかの最先端モデルをベンチマークする。
論文 参考訳(メタデータ) (2024-09-04T11:19:17Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - Towards the Visualization of Aggregated Class Activation Maps to Analyse
the Global Contribution of Class Features [0.47248250311484113]
クラスアクティベーションマップ(CAM)は、分類に寄与するデータサンプルの各機能の重要性を視覚化する。
複数のサンプルからCAMを集約し,意味的に構造化されたデータの分類のグローバルな説明を示す。
我々のアプローチでは,分析者が高次元データの重要な特徴を検出し,世界的説明の可視化に基づいてAIモデルに調整を導出することができる。
論文 参考訳(メタデータ) (2023-07-29T11:13:11Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Addressing Bias in Visualization Recommenders by Identifying Trends in
Training Data: Improving VizML Through a Statistical Analysis of the Plotly
Community Feed [55.41644538483948]
機械学習は、高いスケーラビリティと表現力のために、視覚化レコメンデーションに対する有望なアプローチである。
本研究は,統計的解析によりトレーニングデータの傾向を特定することで,機械学習可視化推薦システムにおけるトレーニングバイアスに対処することを目的とする。
論文 参考訳(メタデータ) (2022-03-09T18:36:46Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
解釈可能性のアプローチは、ユーザが待つことなく、実行可能な洞察を提供するべきです。
本稿では,グローバルレベルとローカルレベルの両方で特徴的重要性のスコアを迅速に提供する解釈可能性アプローチである,アクセレーションモデル非依存説明(AcME)を提案する。
AcMEは機能ランキングを計算しますが、機能値の変化がモデル予測にどのように影響するかを評価するために、What-if分析ツールも提供しています。
論文 参考訳(メタデータ) (2021-12-23T15:18:13Z) - Interactive Visualization and Representation Analysis Applied to Glacier
Segmentation [0.0]
氷河セグメンテーションモデルの解釈にインタラクティブな可視化と表現分析を適用した。
Shiny Rパッケージを使ってオンラインインターフェースを構築し、予測の包括的なエラー解析を行う。
論文 参考訳(メタデータ) (2021-12-11T14:03:53Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - ViCE: Visual Counterfactual Explanations for Machine Learning Models [13.94542147252982]
本稿では,対話型視覚分析ツールViCEを提案する。
結果が視覚インターフェースに効果的に表示され、そのデータとモデルを探索するための対話的手法が提供される。
論文 参考訳(メタデータ) (2020-03-05T04:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。