Algorithm Selection for Recommender Systems via Meta-Learning on Algorithm Characteristics
- URL: http://arxiv.org/abs/2508.04419v1
- Date: Wed, 06 Aug 2025 13:06:24 GMT
- Title: Algorithm Selection for Recommender Systems via Meta-Learning on Algorithm Characteristics
- Authors: Jarne Mathi Decker, Joeran Beel,
- Abstract summary: We propose a per-user meta-learning approach for recommender system selection.<n>We use both user meta-features and automatically extracted algorithm features from source code.<n>Our results show that augmenting a meta-learner with algorithm features improves its average NDCG@10 performance by 8.83%.
- Score: 0.11510009152620666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Algorithm Selection Problem for recommender systems-choosing the best algorithm for a given user or context-remains a significant challenge. Traditional meta-learning approaches often treat algorithms as categorical choices, ignoring their intrinsic properties. Recent work has shown that explicitly characterizing algorithms with features can improve model performance in other domains. Building on this, we propose a per-user meta-learning approach for recommender system selection that leverages both user meta-features and automatically extracted algorithm features from source code. Our preliminary results, averaged over six diverse datasets, show that augmenting a meta-learner with algorithm features improves its average NDCG@10 performance by 8.83% from 0.135 (user features only) to 0.147. This enhanced model outperforms the Single Best Algorithm baseline (0.131) and successfully closes 10.5% of the performance gap to a theoretical oracle selector. These findings show that even static source code metrics provide a valuable predictive signal, presenting a promising direction for building more robust and intelligent recommender systems.
Related papers
- Meta-Learning from Learning Curves for Budget-Limited Algorithm Selection [11.409496019407067]
In a budget-limited scenario, it is crucial to carefully select an algorithm candidate and allocate a budget for training it.
We propose a novel framework in which an agent must select in the process of learning the most promising algorithm without waiting until it is fully trained.
arXiv Detail & Related papers (2024-10-10T08:09:58Z) - Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback Datasets [0.10241134756773229]
We evaluate the NDCG@10 of 24 recommender systems algorithms on 72 recommender systems datasets.
We show that the median Spearman correlation between meta-model predictions and the ground truth increases by an average of 0.124 when the meta-model is optimized to predict the ranking of algorithms instead of their performance.
arXiv Detail & Related papers (2024-09-09T09:42:31Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Fair Feature Subset Selection using Multiobjective Genetic Algorithm [0.0]
We present a feature subset selection approach that improves both fairness and accuracy objectives.
We use statistical disparity as a fairness metric and F1-Score as a metric for model performance.
Our experiments on the most commonly used fairness benchmark datasets show that using the evolutionary algorithm we can effectively explore the trade-off between fairness and accuracy.
arXiv Detail & Related papers (2022-04-30T22:51:19Z) - Per-run Algorithm Selection with Warm-starting using Trajectory-based
Features [5.073358743426584]
Per-instance algorithm selection seeks to recommend, for a given problem instance, one or several suitable algorithms.
We propose an online algorithm selection scheme which we coin per-run algorithm selection.
We show that our approach outperforms static per-instance algorithm selection.
arXiv Detail & Related papers (2022-04-20T14:30:42Z) - Benchmarking Feature-based Algorithm Selection Systems for Black-box
Numerical Optimization [0.0]
Feature-based algorithm selection aims to automatically find the best one from a portfolio of optimization algorithms on an unseen problem.
This paper analyzes algorithm selection systems on the 24 noiseless black-box optimization benchmarking functions.
We show that the performance of algorithm selection systems can be significantly improved by using sequential least squares programming as a pre-solver.
arXiv Detail & Related papers (2021-09-17T07:17:40Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.