Case Studies of Generative Machine Learning Models for Dynamical Systems
- URL: http://arxiv.org/abs/2508.04459v1
- Date: Wed, 06 Aug 2025 13:59:14 GMT
- Title: Case Studies of Generative Machine Learning Models for Dynamical Systems
- Authors: Nachiket U. Bapat, Randy C. Paffenroth, Raghvendra V. Cowlagi,
- Abstract summary: This paper focuses on two case studies of optimally controlled systems that are commonly understood and employed in aircraft guidance.<n>We report GAIMs that are trained with a relatively small set, of the order of a few hundred, of examples and with underlying governing equations.<n>New models are able to synthesize data that satisfy the governing equations and are statistically similar to the training data despite small volumes of training data.
- Score: 0.5499796332553707
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Systems like aircraft and spacecraft are expensive to operate in the real world. The design, validation, and testing for such systems therefore relies on a combination of mathematical modeling, abundant numerical simulations, and a relatively small set of real-world experiments. Due to modeling errors, simplifications, and uncertainties, the data synthesized by simulation models often does not match data from the system's real-world operation. We consider the broad research question of whether this model mismatch can be significantly reduced by generative artificial intelligence models (GAIMs). Unlike text- or image-processing, where generative models have attained recent successes, GAIM development for aerospace engineering applications must not only train with scarce operational data, but their outputs must also satisfy governing equations based on natural laws, e.g., conservation laws. The scope of this paper primarily focuses on two case studies of optimally controlled systems that are commonly understood and employed in aircraft guidance, namely: minimum-time navigation in a wind field and minimum-exposure navigation in a threat field. We report GAIMs that are trained with a relatively small set, of the order of a few hundred, of examples and with underlying governing equations. By focusing on optimally controlled systems, we formulate training loss functions based on invariance of the Hamiltonian function along system trajectories. We investigate three GAIM architectures, namely: the generative adversarial network (GAN) and two variants of the variational autoencoder (VAE). We provide architectural details and thorough performance analyses of these models. The main finding is that our new models, especially the VAE-based models, are able to synthesize data that satisfy the governing equations and are statistically similar to the training data despite small volumes of training data.
Related papers
- Open-Source High-Speed Flight Surrogate Modeling Framework [0.0]
High-speed flight vehicles, which travel much faster than the speed of sound, are crucial for national defense and space exploration.
accurately predicting their behavior under numerous, varied flight conditions is a challenge and often expensive.
The proposed approach involves creating smarter, more efficient machine learning models.
arXiv Detail & Related papers (2024-11-06T01:34:06Z) - Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.<n>We validate our approach through simulations with various planar soft manipulators.<n>Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
We present control-oriented parametric models with varying levels of domain-awareness.
We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics.
arXiv Detail & Related papers (2022-08-15T17:01:14Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.