論文の概要: Emotion Detection Using Conditional Generative Adversarial Networks (cGAN): A Deep Learning Approach
- arxiv url: http://arxiv.org/abs/2508.04481v1
- Date: Wed, 06 Aug 2025 14:32:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.758867
- Title: Emotion Detection Using Conditional Generative Adversarial Networks (cGAN): A Deep Learning Approach
- Title(参考訳): 条件付き生成逆数ネットワーク(cGAN:Deep Learning Approach)を用いた感情検出
- Authors: Anushka Srivastava,
- Abstract要約: 本稿では,cGANを用いた深層学習による感情検出手法を提案する。
単一のデータ型に依存する従来のユニモーダル手法とは異なり、テキスト、音声、表情を統合するマルチモーダルフレームワークを探索する。
提案したcGANアーキテクチャは、合成感情に富んだデータを生成し、複数のモーダルの分類精度を向上させるために訓練されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a deep learning-based approach to emotion detection using Conditional Generative Adversarial Networks (cGANs). Unlike traditional unimodal techniques that rely on a single data type, we explore a multimodal framework integrating text, audio, and facial expressions. The proposed cGAN architecture is trained to generate synthetic emotion-rich data and improve classification accuracy across multiple modalities. Our experimental results demonstrate significant improvements in emotion recognition performance compared to baseline models. This work highlights the potential of cGANs in enhancing human-computer interaction systems by enabling more nuanced emotional understanding.
- Abstract(参考訳): 本稿では,cGAN(Conditional Generative Adversarial Networks)を用いた感情検出のためのディープラーニングアプローチを提案する。
単一のデータ型に依存する従来のユニモーダル手法とは異なり、テキスト、音声、表情を統合するマルチモーダルフレームワークを探索する。
提案したcGANアーキテクチャは、合成感情に富んだデータを生成し、複数のモーダルの分類精度を向上させるために訓練されている。
実験の結果,ベースラインモデルと比較して感情認識性能は有意に向上した。
この研究は、よりニュアンスな感情的理解を可能にすることによって、人間とコンピュータの相互作用システムを強化するためのcGANの可能性を強調している。
関連論文リスト
- Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection [56.644686934050576]
ソーシャルメディアは情報発信の主流となっているが、誤報の急速な拡散を助長している。
従来の誤報検出法は主に表面的な特徴に焦点を合わせ、伝播過程における人間の共感の重要な役割を見落としている。
著者と読者の両方の視点から誤情報を分析するために、認知的・感情的共感を統合したデュアル・アスペクト・共感フレームワーク(DAE)を提案する。
論文 参考訳(メタデータ) (2025-04-24T07:48:26Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
感情中心型生成的リプレイ (ECgr) は, 生成的対向ネットワークから合成画像を統合することで, この課題に対処する。
ECgrは、生成された画像の忠実性を保証するために品質保証アルゴリズムを組み込んでいる。
4つの多様な表情データセットに対する実験結果から,擬似リハーサル法により生成されたイメージを組み込むことで,ターゲットとするデータセットとソースデータセットのトレーニングが促進されることが示された。
論文 参考訳(メタデータ) (2024-04-18T15:28:34Z) - EMERSK -- Explainable Multimodal Emotion Recognition with Situational
Knowledge [0.0]
状況知識を用いた説明可能なマルチモーダル感情認識(EMERSK)を提案する。
EMERSKは視覚情報を用いた人間の感情認識と説明のための汎用システムである。
本システムは, 表情, 姿勢, 歩行などの複数のモーダルを柔軟かつモジュラーな方法で処理することができる。
論文 参考訳(メタデータ) (2023-06-14T17:52:37Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
感情認識のための一般的なディープラーニングアプローチを包括的に評価する。
音声信号の長距離依存性が感情認識に重要であることを示す。
スピード/レート向上は、モデル間で最も堅牢なパフォーマンス向上を提供する。
論文 参考訳(メタデータ) (2022-11-09T17:27:03Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Attentive Cross-modal Connections for Deep Multimodal Wearable-based
Emotion Recognition [7.559720049837459]
本稿では、畳み込みニューラルネットワーク間で情報を共有するための、新しい注意深いクロスモーダル接続を提案する。
具体的には、EDAとECGの中間表現を共有することにより、感情分類を改善する。
実験の結果,提案手法は強いマルチモーダル表現を学習し,多くのベースライン法より優れていることがわかった。
論文 参考訳(メタデータ) (2021-08-04T18:40:32Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
複数の個体の神経生理学的特徴に関連する情報的指標を抽象化するために,動的エントロピーに基づくパターン学習(DEPL)として表されるディープラーニングフレームワークを提案する。
DEPLは、ダイナミックエントロピーに基づく特徴の皮質位置間の相互依存性をモデル化することにより、ディープ畳み込みニューラルネットワークによって生成された表現の能力を向上した。
論文 参考訳(メタデータ) (2020-09-26T07:22:07Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。