論文の概要: From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario
- arxiv url: http://arxiv.org/abs/2508.04691v1
- Date: Wed, 06 Aug 2025 17:54:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.864623
- Title: From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario
- Title(参考訳): MASからMARSへ:医療シナリオにおける階層型多エージェントロボットシステムにおけるコーディネーションの失敗とトレードオフ
- Authors: Yuanchen Bai, Zijian Ding, Shaoyue Wen, Xiang Chang, Angelique Taylor,
- Abstract要約: マルチエージェントロボットシステム(MARS)は、物理的およびタスク関連の制約を統合することで、マルチエージェントシステム上に構築される。
高度なマルチエージェントフレームワークが利用可能であるにも関わらず、実際のロボットへのデプロイメントは制限されている。
- 参考スコア(独自算出の注目度): 3.5262044630932254
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-agent robotic systems (MARS) build upon multi-agent systems by integrating physical and task-related constraints, increasing the complexity of action execution and agent coordination. However, despite the availability of advanced multi-agent frameworks, their real-world deployment on robots remains limited, hindering the advancement of MARS research in practice. To bridge this gap, we conducted two studies to investigate performance trade-offs of hierarchical multi-agent frameworks in a simulated real-world multi-robot healthcare scenario. In Study 1, using CrewAI, we iteratively refine the system's knowledge base, to systematically identify and categorize coordination failures (e.g., tool access violations, lack of timely handling of failure reports) not resolvable by providing contextual knowledge alone. In Study 2, using AutoGen, we evaluate a redesigned bidirectional communication structure and further measure the trade-offs between reasoning and non-reasoning models operating within the same robotic team setting. Drawing from our empirical findings, we emphasize the tension between autonomy and stability and the importance of edge-case testing to improve system reliability and safety for future real-world deployment. Supplementary materials, including codes, task agent setup, trace outputs, and annotated examples of coordination failures and reasoning behaviors, are available at: https://byc-sophie.github.io/mas-to-mars/.
- Abstract(参考訳): マルチエージェントロボットシステム(MARS)は、物理的およびタスク関連の制約を統合し、アクション実行とエージェント調整の複雑さを増大させることにより、マルチエージェントシステムの上に構築される。
しかし、高度なマルチエージェントフレームワークが利用可能であるにも関わらず、現実のロボットへの展開は限定的であり、実際にMARS研究が進行するのを妨げている。
このギャップを埋めるため,シミュレーション実世界のマルチロボット医療シナリオにおいて,階層型マルチエージェントフレームワークのパフォーマンストレードオフを調査する2つの研究を行った。
研究1では、CrewAIを用いてシステムの知識基盤を反復的に洗練し、協調障害(例えば、ツールアクセス違反、障害報告のタイムリーな処理の欠如)を系統的に識別し分類する。
In Study 2, using AutoGen, we evaluate a designed bidirectional communication structure and further measure the trade-off between reasoning and non-reasoning models operating in the same robot team setting。
実証的な結果から、自律性と安定性の緊張と、システムの信頼性と安全性を向上させるためのエッジケーステストの重要性を強調します。
コード、タスクエージェントの設定、トレース出力、調整失敗と推論動作の注釈付き例を含む追加資料は、https://byc-sophie.github.io/mas-to-mars/.com/で公開されている。
関連論文リスト
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
大規模言語モデル(LLM)を活用したAIエージェントの出現は、エージェントWebに対する重要な転換点である。
このパラダイムでは、エージェントが直接対話して、ユーザに代わって複雑なタスクを計画、コーディネート、実行します。
本稿では,エージェントWebの理解と構築のための構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-28T17:58:12Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - From Virtual Agents to Robot Teams: A Multi-Robot Framework Evaluation in High-Stakes Healthcare Context [2.016235597066821]
現在のフレームワークは、エージェントを物理的に具体化されたエンティティではなく、概念的なタスク実行子として扱う。
本稿では,プロセスの透明性,前向きな障害回復,コンテキストグラウンド化を重視した3つの設計ガイドラインを提案する。
我々の研究は、よりレジリエントで堅牢なマルチエージェントロボットシステムの開発を知らせる。
論文 参考訳(メタデータ) (2025-06-04T04:05:38Z) - Distinguishing Autonomous AI Agents from Collaborative Agentic Systems: A Comprehensive Framework for Understanding Modern Intelligent Architectures [0.0]
大規模言語モデルの出現は、人工知能の2つの異なる相互接続パラダイム、すなわちスタンドアロンAIエージェントと協調エージェントAIエコシステムを触媒した。
本研究は, 運用原則, 構造構成, 配置方法論の体系的解析を通じて, これらのアーキテクチャを識別するための決定的な枠組みを確立する。
論文 参考訳(メタデータ) (2025-06-02T08:52:23Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)に適したシステムレベルの異常検出フレームワークを提案する。
本稿では,エージェント間相互作用を動的実行グラフとしてモデル化し,ノード,エッジ,パスレベルでの意味的異常検出を可能にするグラフベースのフレームワークを提案する。
第2に,セキュリティポリシとコンテキスト推論に基づくMAS実行の監視,解析,介入を行うLLMによる監視エージェントである,プラグイン可能なSentinelAgentを導入する。
論文 参考訳(メタデータ) (2025-05-30T04:25:19Z) - From Glue-Code to Protocols: A Critical Analysis of A2A and MCP Integration for Scalable Agent Systems [0.8909482883800253]
エージェント間通信のためのGoogleのエージェント・トゥ・エージェント(A2A)プロトコルと標準化されたツールアクセスのためのAnthropicのモデルコンテキストプロトコル(MCP)の2つのオープンスタンダードは、断片化されたカスタム統合アプローチの制限を克服することを約束している。
本稿では, A2A と MCP を効果的に統合することは, 交差点に固有の, 創発的な課題をもたらすことを主張する。
論文 参考訳(メタデータ) (2025-05-06T16:40:39Z) - Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
LLMマルチエージェントシステムにおける障害帰属は、まだ調査が過小評価されており、労働集約的である。
本稿では,3つの自動故障帰属手法の開発と評価を行い,その欠点と欠点を要約する。
最良の方法は、障害に応答するエージェントを特定する際に53.5%の精度を達成するが、故障の特定には14.2%しか役に立たない。
論文 参考訳(メタデータ) (2025-04-30T23:09:44Z) - RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints [27.467048581838405]
埋め込み型マルチエージェントシステムに対する構成制約の概念を提案する。
異なるタイプの制約に合わせたインターフェースを設計し、物理的世界とのシームレスな対話を可能にします。
マルチエージェント操作のための最初のベンチマークであるRoboFactoryを紹介した。
論文 参考訳(メタデータ) (2025-03-20T17:58:38Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
大規模言語モデル(LLM)は、自律的なエージェントとして顕著な能力を示している。
既存のベンチマークでは、単一エージェントタスクにフォーカスするか、狭いドメインに限定されており、マルチエージェントのコーディネーションと競合のダイナミクスを捉えていない。
多様な対話シナリオにまたがってLLMベースのマルチエージェントシステムを評価するためのベンチマークであるMultiAgentBenchを紹介する。
論文 参考訳(メタデータ) (2025-03-03T05:18:50Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
マルチモーダル冗長性(MMRNet)を用いた信頼度の高いオブジェクト検出・分割システムを提案する。
これは、マルチモーダル冗長の概念を導入し、デプロイ中のセンサ障害問題に対処する最初のシステムである。
システム全体の出力信頼性と不確実性を測定するために,すべてのモダリティからの出力を利用する新しいラベルフリーマルチモーダル整合性(MC)スコアを提案する。
論文 参考訳(メタデータ) (2022-10-19T19:15:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。